Abstract

In the present work, porous silicon (PS) based Bragg reflectors are fabricated, and the reactive PS surface is passivated by means of thermal carbonization (TC) by acetylene decomposition. The gas sensing properties of the reflectors are studied with different gas compositions and concentrations.

Based on the results it can be concluded that thermally carbonized Bragg reflectors provide an easy and inexpensive means to produce chemically stable high quality PS reflectors with good gas sensing properties, which differ from those of unpassivated PS reflectors.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structural considerations on multistopband mesoporous silicon rugate filters prepared for gas sensing purposes

Tero Jalkanen, Jarno Salonen, Vicente Torres-Costa, Kazuhiro Fukami, Tetsuo Sakka, and Yukio H. Ogata
Opt. Express 19(14) 13291-13305 (2011)

Optical microresonator based on hollow sphere with porous wall for chemical sensing

Hanzheng Wang, Lei Yuan, Cheol-Woon Kim, Qun Han, Tao Wei, Xinwei Lan, and Hai Xiao
Opt. Lett. 37(1) 94-96 (2012)

Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency

L. González-García, S. Colodrero, H. Míguez, and A. R. González-Elipe
Opt. Express 23(24) A1642-A1650 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.  57, 1046–1048 (1990).
    [Crossref]
  2. L. M. Peter, D. J. Ripley, and R. I. Wielgosz, “In-situ monitoring of internal surface-area during the growth of porous silicon,” Appl. Phys. Lett.  66, 2355–2357 (1995).
    [Crossref]
  3. H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).
  4. L. T. Canham, “Bioactive silicon structure fabrication through nanoetching techniques,” Adv. Mater.  7, 1033–1037 (1995).
    [Crossref]
  5. R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett.  69, 3001–3003 (1996).
    [Crossref]
  6. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
    [Crossref] [PubMed]
  7. R. C. Anderson, R. S. Muller, and C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 21–23, 835–839 (1990).
  8. C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
    [Crossref]
  9. G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett.  64, 2367–2369 (1994).
    [Crossref]
  10. M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
    [Crossref]
  11. V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical characterization of porous silicon films and multilayer filters,” Appl. Phys. A 79, 1919–1923 (2004).
    [Crossref]
  12. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.  86, 1781–1784 (1999).
    [Crossref]
  13. M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
    [Crossref]
  14. M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
    [Crossref]
  15. M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
    [Crossref]
  16. J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
    [Crossref]
  17. M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
    [Crossref]
  18. V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
    [Crossref]
  19. V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
    [Crossref]
  20. J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
    [Crossref]
  21. J. Salonen, E. Laine, and L. Niinistö, “Thermal carbonization of porous silicon surface by acetylene,” J. Appl. Phys.  91, 456–461 (2002).
    [Crossref]
  22. J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Appl. Surf. Sci.  225, 389–394 (2004).
    [Crossref]
  23. M. Björkqvist, J. Salonen, J. Paaski, and E. Laine, “Characterization of thermally carbonized porous silicon humidity sensor,” Sens. Actuators A 112, 244–247 (2004).
    [Crossref]
  24. M. Björkqvist, J. Salonen, E. Laine, and L. Niinistö, “Comparison of stabilizing treatments on porous silicon for sensor applications,” Phys. Status Solidi A 197, 374–377 (2003).
    [Crossref]
  25. CRC Handbook of Chemistry and Physics 88th edition, D. R. Lide, ed., (CRC Press/Taylor and Francis, Boca Raton, FL, 2007–2008).
  26. J. McMurry, in: Organic Chemistry (5th edition), (Thomson Brooks/Cole,2000).
  27. H. A. Macleod, in: Thin-film optical filters (Second edition), (Adam Hilger Ltd, Bristol, 1986), chap. 5.
  28. V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

2008 (2)

V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
[Crossref]

V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
[Crossref]

2007 (2)

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
[Crossref]

J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
[Crossref]

2006 (1)

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
[Crossref]

2004 (3)

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical characterization of porous silicon films and multilayer filters,” Appl. Phys. A 79, 1919–1923 (2004).
[Crossref]

J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Appl. Surf. Sci.  225, 389–394 (2004).
[Crossref]

M. Björkqvist, J. Salonen, J. Paaski, and E. Laine, “Characterization of thermally carbonized porous silicon humidity sensor,” Sens. Actuators A 112, 244–247 (2004).
[Crossref]

2003 (1)

M. Björkqvist, J. Salonen, E. Laine, and L. Niinistö, “Comparison of stabilizing treatments on porous silicon for sensor applications,” Phys. Status Solidi A 197, 374–377 (2003).
[Crossref]

2002 (1)

J. Salonen, E. Laine, and L. Niinistö, “Thermal carbonization of porous silicon surface by acetylene,” J. Appl. Phys.  91, 456–461 (2002).
[Crossref]

2000 (1)

J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
[Crossref]

1999 (1)

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.  86, 1781–1784 (1999).
[Crossref]

1998 (1)

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

1997 (2)

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

1996 (1)

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett.  69, 3001–3003 (1996).
[Crossref]

1995 (2)

L. M. Peter, D. J. Ripley, and R. I. Wielgosz, “In-situ monitoring of internal surface-area during the growth of porous silicon,” Appl. Phys. Lett.  66, 2355–2357 (1995).
[Crossref]

L. T. Canham, “Bioactive silicon structure fabrication through nanoetching techniques,” Adv. Mater.  7, 1033–1037 (1995).
[Crossref]

1994 (2)

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett.  64, 2367–2369 (1994).
[Crossref]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

1992 (1)

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

1990 (2)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.  57, 1046–1048 (1990).
[Crossref]

R. C. Anderson, R. S. Muller, and C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 21–23, 835–839 (1990).

1985 (1)

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[Crossref]

Alekseev, S. A.

J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
[Crossref]

Anderson, R. C.

R. C. Anderson, R. S. Muller, and C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 21–23, 835–839 (1990).

Andrzejak, C.

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Arens-Fischer, R.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

Arwin, H.

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett.  69, 3001–3003 (1996).
[Crossref]

Barbier, D.

J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
[Crossref]

Beale, M. I. J.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[Crossref]

Berger, M. G.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Billat, S.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

Bjorklund, R. B.

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett.  69, 3001–3003 (1996).
[Crossref]

Björkqvist, M.

J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Appl. Surf. Sci.  225, 389–394 (2004).
[Crossref]

M. Björkqvist, J. Salonen, J. Paaski, and E. Laine, “Characterization of thermally carbonized porous silicon humidity sensor,” Sens. Actuators A 112, 244–247 (2004).
[Crossref]

M. Björkqvist, J. Salonen, E. Laine, and L. Niinistö, “Comparison of stabilizing treatments on porous silicon for sensor applications,” Phys. Status Solidi A 197, 374–377 (2003).
[Crossref]

J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
[Crossref]

Canham, L. T.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.  86, 1781–1784 (1999).
[Crossref]

L. T. Canham, “Bioactive silicon structure fabrication through nanoetching techniques,” Adv. Mater.  7, 1033–1037 (1995).
[Crossref]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.  57, 1046–1048 (1990).
[Crossref]

Chapron, J.

J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
[Crossref]

Dancil, K.-P. S.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Dieker, C.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

Eickhoff, T.

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Ghadiri, M. R.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Greef, R.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[Crossref]

Grosse, P.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

Harraz, F. A.

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
[Crossref]

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
[Crossref]

Herino, R.

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Hilbrich, S.

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

Hillbrich, S.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

Jalkanen, T.

V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

Krüger, M.

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

Laine, E.

M. Björkqvist, J. Salonen, J. Paaski, and E. Laine, “Characterization of thermally carbonized porous silicon humidity sensor,” Sens. Actuators A 112, 244–247 (2004).
[Crossref]

J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Appl. Surf. Sci.  225, 389–394 (2004).
[Crossref]

M. Björkqvist, J. Salonen, E. Laine, and L. Niinistö, “Comparison of stabilizing treatments on porous silicon for sensor applications,” Phys. Status Solidi A 197, 374–377 (2003).
[Crossref]

J. Salonen, E. Laine, and L. Niinistö, “Thermal carbonization of porous silicon surface by acetylene,” J. Appl. Phys.  91, 456–461 (2002).
[Crossref]

J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
[Crossref]

Lehto, V.-P.

J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
[Crossref]

Lehto, V-P.

V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
[Crossref]

V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
[Crossref]

V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

Ligeon, M.

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Lüth, H.

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Lysenko, V.

J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
[Crossref]

Macleod, H. A.

H. A. Macleod, in: Thin-film optical filters (Second edition), (Adam Hilger Ltd, Bristol, 1986), chap. 5.

Martínez-Duart, J. M.

V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
[Crossref]

V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
[Crossref]

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical characterization of porous silicon films and multilayer filters,” Appl. Phys. A 79, 1919–1923 (2004).
[Crossref]

V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

Martín-Palma, R. J.

V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
[Crossref]

V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
[Crossref]

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical characterization of porous silicon films and multilayer filters,” Appl. Phys. A 79, 1919–1923 (2004).
[Crossref]

V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

McMurry, J.

J. McMurry, in: Organic Chemistry (5th edition), (Thomson Brooks/Cole,2000).

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Muller, R. S.

R. C. Anderson, R. S. Muller, and C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 21–23, 835–839 (1990).

Münder, H.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Niinistö, L.

J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Appl. Surf. Sci.  225, 389–394 (2004).
[Crossref]

M. Björkqvist, J. Salonen, E. Laine, and L. Niinistö, “Comparison of stabilizing treatments on porous silicon for sensor applications,” Phys. Status Solidi A 197, 374–377 (2003).
[Crossref]

J. Salonen, E. Laine, and L. Niinistö, “Thermal carbonization of porous silicon surface by acetylene,” J. Appl. Phys.  91, 456–461 (2002).
[Crossref]

J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
[Crossref]

Ogata, Y. H.

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
[Crossref]

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
[Crossref]

Paaski, J.

M. Björkqvist, J. Salonen, J. Paaski, and E. Laine, “Characterization of thermally carbonized porous silicon humidity sensor,” Sens. Actuators A 112, 244–247 (2004).
[Crossref]

Pearson, P. J.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[Crossref]

Peter, L. M.

L. M. Peter, D. J. Ripley, and R. I. Wielgosz, “In-situ monitoring of internal surface-area during the growth of porous silicon,” Appl. Phys. Lett.  66, 2355–2357 (1995).
[Crossref]

Pickering, C.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[Crossref]

Richter, W.

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Ripley, D. J.

L. M. Peter, D. J. Ripley, and R. I. Wielgosz, “In-situ monitoring of internal surface-area during the growth of porous silicon,” Appl. Phys. Lett.  66, 2355–2357 (1995).
[Crossref]

Robbins, D. J.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[Crossref]

Rossow, U.

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Russell, P. St. J.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.  86, 1781–1784 (1999).
[Crossref]

Sailor, M. J.

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
[Crossref]

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
[Crossref]

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Sakka, T.

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
[Crossref]

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
[Crossref]

Salem, M. S.

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
[Crossref]

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
[Crossref]

Salonen, J.

V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
[Crossref]

V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
[Crossref]

M. Björkqvist, J. Salonen, J. Paaski, and E. Laine, “Characterization of thermally carbonized porous silicon humidity sensor,” Sens. Actuators A 112, 244–247 (2004).
[Crossref]

J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Appl. Surf. Sci.  225, 389–394 (2004).
[Crossref]

M. Björkqvist, J. Salonen, E. Laine, and L. Niinistö, “Comparison of stabilizing treatments on porous silicon for sensor applications,” Phys. Status Solidi A 197, 374–377 (2003).
[Crossref]

J. Salonen, E. Laine, and L. Niinistö, “Thermal carbonization of porous silicon surface by acetylene,” J. Appl. Phys.  91, 456–461 (2002).
[Crossref]

J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
[Crossref]

V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

Scheyen, D.

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

Snow, P. A.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.  86, 1781–1784 (1999).
[Crossref]

Squire, E. K.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.  86, 1781–1784 (1999).
[Crossref]

Theiss, W.

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

Thönissen, M.

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

Tobias, C. W.

R. C. Anderson, R. S. Muller, and C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 21–23, 835–839 (1990).

Torres-Costa, V.

V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
[Crossref]

V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
[Crossref]

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical characterization of porous silicon films and multilayer filters,” Appl. Phys. A 79, 1919–1923 (2004).
[Crossref]

V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

Vescan, L.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

Vincent, G.

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett.  64, 2367–2369 (1994).
[Crossref]

Wernke, M.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

Wielgosz, R. I.

L. M. Peter, D. J. Ripley, and R. I. Wielgosz, “In-situ monitoring of internal surface-area during the growth of porous silicon,” Appl. Phys. Lett.  66, 2355–2357 (1995).
[Crossref]

Zaitsev, V. N.

J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
[Crossref]

Zangooie, S.

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett.  69, 3001–3003 (1996).
[Crossref]

Adv. Mater (1)

L. T. Canham, “Bioactive silicon structure fabrication through nanoetching techniques,” Adv. Mater.  7, 1033–1037 (1995).
[Crossref]

Appl. Phys. A (1)

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical characterization of porous silicon films and multilayer filters,” Appl. Phys. A 79, 1919–1923 (2004).
[Crossref]

Appl. Phys. Lett (4)

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett.  69, 3001–3003 (1996).
[Crossref]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.  57, 1046–1048 (1990).
[Crossref]

L. M. Peter, D. J. Ripley, and R. I. Wielgosz, “In-situ monitoring of internal surface-area during the growth of porous silicon,” Appl. Phys. Lett.  66, 2355–2357 (1995).
[Crossref]

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett.  64, 2367–2369 (1994).
[Crossref]

Appl. Surf. Sci (2)

H. Münder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Lüth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, “Optical characterization of porous silicon layers formed on heavily p-doped substrates,” Appl. Surf. Sci.  6, 56–58 (1992).

J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Appl. Surf. Sci.  225, 389–394 (2004).
[Crossref]

J. Appl. Phys (4)

V. Torres-Costa, R. J. Martín-Palma, J. M. Martínez-Duart, J. Salonen, and V-P. Lehto, “Effective passivation of porous silicon optical devices by thermal carbonization,” J. Appl. Phys.  103, Art. No. 083124 (2008).
[Crossref]

J. Salonen, E. Laine, and L. Niinistö, “Thermal carbonization of porous silicon surface by acetylene,” J. Appl. Phys.  91, 456–461 (2002).
[Crossref]

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.  86, 1781–1784 (1999).
[Crossref]

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys.  100, Art. No. 083520 (2006).
[Crossref]

J. Phys. D (1)

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D 27, 1333–1336 (1994).
[Crossref]

Microporous Mesoporous Mater (1)

V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Passivation of nanostruc-tured silicon optical devices by thermal carbonization,” Microporous Mesoporous Mater.  111, 636–638 (2008).
[Crossref]

Opt. Commun (1)

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiss, and H. Lüth, “Suppression of ageing effects in porous silicon interference filters,” Opt. Commun.  146, 309–315 (1998).
[Crossref]

Phys. Status Solidi A (3)

V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martín-Palma, and J. M. Martínez-Duart, “Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity,” Phys. Status Solidi A,  1#x2013;3 (2009)/DOI 10.1002/pssa.200881052.

J. Salonen, V.-P. Lehto, M. Björkqvist, E. Laine, and L. Niinistö, “Studies of thermally-carbonized porous silicon surfaces,” Phys. Status Solidi A 182, 123–126 (2000).
[Crossref]

M. Björkqvist, J. Salonen, E. Laine, and L. Niinistö, “Comparison of stabilizing treatments on porous silicon for sensor applications,” Phys. Status Solidi A 197, 374–377 (2003).
[Crossref]

Phys. Status Solidi C (1)

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, “Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon,” Phys. Status Solidi C 4, 2073–2077 (2007).
[Crossref]

Science (1)

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Sens. Actuators A (2)

R. C. Anderson, R. S. Muller, and C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 21–23, 835–839 (1990).

M. Björkqvist, J. Salonen, J. Paaski, and E. Laine, “Characterization of thermally carbonized porous silicon humidity sensor,” Sens. Actuators A 112, 244–247 (2004).
[Crossref]

Sens. Actuators B (1)

J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, “Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters,” Sens. Actuators B 120, 706–711 (2007).
[Crossref]

Thin Solid Films (2)

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hillbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[Crossref]

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[Crossref]

Other (3)

CRC Handbook of Chemistry and Physics 88th edition, D. R. Lide, ed., (CRC Press/Taylor and Francis, Boca Raton, FL, 2007–2008).

J. McMurry, in: Organic Chemistry (5th edition), (Thomson Brooks/Cole,2000).

H. A. Macleod, in: Thin-film optical filters (Second edition), (Adam Hilger Ltd, Bristol, 1986), chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The measured reflectance spectrum for a thermally hydrocarbonized Bragg reflector.

Fig. 2.
Fig. 2.

The measured redshifts for different flow ratios. The redshifts presented are the mean values of three measurements. Standard deviation for the data points is also included in the graph.

Fig. 3.
Fig. 3.

Redshift induced by hexane vapour adsorption to the porous structure.

Fig. 4.
Fig. 4.

Full width at half maximum values as a function of gas flow ratio for acetone, decane, and methylamine.

Fig. 5.
Fig. 5.

The acetone and methylamine induced spectral redshifts of the resonant wavelength are almost identical, as shown in graph a). However, the influence that the adsorbants have on the shape of the observed spectrum is totally different. Acetone widens the stopband, whereas methylamine has the opposite effect. This behaviour can be seen for the FWHM values recorded for the reflective stopbands, which are presented in graph b).

Fig. 6.
Fig. 6.

A correlation between the relative redshift and the saturated vapour pressure values was observed. Low value of the saturated vapour pressure leads to a higher sensitivity for the gas molecules.

Fig. 7.
Fig. 7.

Time-resolved photodiode response measurement for methylamine vapour at a fixed wavelength of 1520 nm.

Fig. 8.
Fig. 8.

Time-resolved measurement that describes the reflected light intensity at λ = 1520nm. Acetone and hexane were introduced in the measurement chamber with a nitrogen carrier flow at t = 20 s and flushed away at t = 200s.

Tables (2)

Tables Icon

Table 1. Volumetric vapour concentrations obtained with different gas flow ratios. Gas flow ratio indicates the fraction of the nitrogen carrier flow led to the bubbling chamber.

Tables Icon

Table 2. Refractive indices n, dielectric constant values ε, and the saturated vapour pressure values p 0 for the studied substances [25, 26].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nd = λ 0 4 ,
FWHM tr / λ tr 0 FWHM in / λ in 0 = FWHM tr / λ in 0 FWHM in / λ tr 0 ,
Δλ λ 0 = 4 π arcsin ( n H n L n H + n L ) .

Metrics