Abstract

The gap plasmon mode of an eccentric coaxial waveguide is analyzed by the effective index method. The results agree-well with fully-vectorial numerical calculations. In the eccentric structure, there is extreme subwavelength field localization around the narrowest gap due to the gap plasmon. Furthermore, the effective index of the lowest-order waveguide mode increases considerably, for example, to 3.7 in the structure considered with a 2 nm minimum gap. The nanostructure waveguide geometry and wavelength (4 μm) are comparable with recent experiments on coaxial structures, except that that position of the center island is shifted for the eccentric coaxial structure; therefore, the proposed structure is a good candidate for future fabrication and experiments. In the visible regime, the effective index increases to over 10 for the same structure. The influence of symmetry-breaking in the eccentric coaxial structure is discussed as a way to enhance the local field and improve optical coupling.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  2. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef] [PubMed]
  3. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004).
    [CrossRef] [PubMed]
  4. M. Sarrazin and J. P. Vigneron, "Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes," Opt. Commun. 240, 89-97 (2004).
    [CrossRef]
  5. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
    [CrossRef]
  6. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
    [CrossRef]
  7. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
    [CrossRef] [PubMed]
  8. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  9. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
    [CrossRef]
  10. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
    [CrossRef]
  11. W. Zhang, "Resonant terahertz transmission in plasmonic arrays of subwavelength holes," European Physical Journal-Applied Physics 43, 1-18 (2008).
    [CrossRef]
  12. A. Roberts and R. C. McPhedran, "Bandpass grids with annular apertures," IEEE Trans. Antennas Propag. 36, 607-611 (1988).
    [CrossRef]
  13. F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002).
    [CrossRef]
  14. F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
    [CrossRef]
  15. J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
    [CrossRef] [PubMed]
  16. Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
    [CrossRef]
  17. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
    [CrossRef]
  18. W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Express 13, 4406-4413 (2005).
    [CrossRef] [PubMed]
  19. W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef] [PubMed]
  20. A. Moreau, G. Granet, F. I. Baida, and D. Van Labeke, "Light transmission by subwavelength square coaxial aperture arrays in metallic films," Opt. Express 11, 1131-1136 (2003).
    [CrossRef] [PubMed]
  21. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).
  22. H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentirc waveguides," IEEE Trans. Microwave Theory Tech. 14, 487 (1966).
    [CrossRef]
  23. E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular innder conductor," Electron. Lett. 5, 251 (1969).
    [CrossRef]
  24. B. N. Das and S. B. Chakrabarty, "Evaluation of cut-off frequencies of higher order modes in eccentric coaxial line," IEE Proc. Microwaves Antennas Propag. 142, 350-356 (1995).
    [CrossRef]
  25. B. N. Das and S. B. Chakrabarty, "Electromagnetic analysis of eccentric coaxial cylinders of finite length," J. Inst. Electron. Telecom. Eng. 42, 63-68 (1996).
  26. S. C. Zhang, "Eigenfrequency shift of higher-order modes in a coaxial cavity with eccentric inner rod," Int. J. Infrared Millim. Waves 22, 577-583 (2001).
    [CrossRef]
  27. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  28. J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
    [CrossRef]
  29. R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
    [CrossRef] [PubMed]
  30. A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A-Pure Appl. Opt. 7, S90-S96 (2005).
    [CrossRef]
  31. Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays," Phys. Rev. B 76, 085409 (2007).
    [CrossRef]
  32. J. B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401 (2006).
    [CrossRef]
  33. R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983).
    [CrossRef]
  34. R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, "Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures," Opt. Lett. 32, 3414-3416 (2007).
    [CrossRef] [PubMed]
  35. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
    [CrossRef]
  36. Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, "Role of shape in middle-infrared transmission enhancement through periodically perforated metal films," Opt. Lett. 32, 3140-3142 (2007).
    [CrossRef] [PubMed]
  37. E. Jin and X. Xu, "Radiation transfer through nanoscale apertures," J. Quantum Spectrosc. Radiat. Transfer 93, 163-173 (2005).
    [CrossRef]
  38. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, C. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
    [CrossRef] [PubMed]
  39. M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
    [CrossRef]
  40. L. K. S. Kumar and R. Gordon, "Overlapping double-hole nanostructure in a metal film for localized field enhancement," IEEE J. Sel. Top. Quantum Electron. 12, 1228-1232 (2006).
    [CrossRef]
  41. L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006).
    [CrossRef]
  42. M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A-Pure Appl. Opt. 7, S118-S123 (2005).
    [CrossRef]
  43. J. H. Kim and P. J. Moyer, "Transmission characteristics of metallic equilateral triangular nanohole arrays," Appl. Phys. Lett. 89, 121106 (2006).
    [CrossRef]
  44. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, "Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement," Opt. Express 15, 13894-13906 (2007).
    [CrossRef] [PubMed]
  45. R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotechnol. 5, 291-294 (2006).
    [CrossRef]
  46. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
    [CrossRef]
  47. C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides (Springer New York, 2008).
    [CrossRef]
  48. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  49. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
    [CrossRef]
  50. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88, 261104 (2006).
    [CrossRef]
  51. K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
    [CrossRef]
  52. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
    [CrossRef]
  53. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
    [CrossRef]
  54. A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
    [CrossRef]
  55. Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
    [CrossRef]
  56. T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
    [CrossRef]
  57. R. Quidant, and C. Girard, "Surface-plasmon-based optical manipulation," Laser Photon. Rev. 2, 47-57 (2008).
    [CrossRef]

2008

W. Zhang, "Resonant terahertz transmission in plasmonic arrays of subwavelength holes," European Physical Journal-Applied Physics 43, 1-18 (2008).
[CrossRef]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
[CrossRef]

R. Quidant, and C. Girard, "Surface-plasmon-based optical manipulation," Laser Photon. Rev. 2, 47-57 (2008).
[CrossRef]

2007

T. Xu, X. Jiao, G. P. Zhang, and S. Blair, "Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement," Opt. Express 15, 13894-13906 (2007).
[CrossRef] [PubMed]

Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, "Role of shape in middle-infrared transmission enhancement through periodically perforated metal films," Opt. Lett. 32, 3140-3142 (2007).
[CrossRef] [PubMed]

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, "Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures," Opt. Lett. 32, 3414-3416 (2007).
[CrossRef] [PubMed]

T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
[CrossRef]

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays," Phys. Rev. B 76, 085409 (2007).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

2006

L. K. S. Kumar and R. Gordon, "Overlapping double-hole nanostructure in a metal film for localized field enhancement," IEEE J. Sel. Top. Quantum Electron. 12, 1228-1232 (2006).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006).
[CrossRef]

J. H. Kim and P. J. Moyer, "Transmission characteristics of metallic equilateral triangular nanohole arrays," Appl. Phys. Lett. 89, 121106 (2006).
[CrossRef]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotechnol. 5, 291-294 (2006).
[CrossRef]

J. B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88, 261104 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, C. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

2005

E. Jin and X. Xu, "Radiation transfer through nanoscale apertures," J. Quantum Spectrosc. Radiat. Transfer 93, 163-173 (2005).
[CrossRef]

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
[CrossRef] [PubMed]

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Express 13, 4406-4413 (2005).
[CrossRef] [PubMed]

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
[CrossRef] [PubMed]

W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A-Pure Appl. Opt. 7, S90-S96 (2005).
[CrossRef]

M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A-Pure Appl. Opt. 7, S118-S123 (2005).
[CrossRef]

2004

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

M. Sarrazin and J. P. Vigneron, "Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes," Opt. Commun. 240, 89-97 (2004).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004).
[CrossRef] [PubMed]

2003

A. Moreau, G. Granet, F. I. Baida, and D. Van Labeke, "Light transmission by subwavelength square coaxial aperture arrays in metallic films," Opt. Express 11, 1131-1136 (2003).
[CrossRef] [PubMed]

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

2002

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

2001

S. C. Zhang, "Eigenfrequency shift of higher-order modes in a coaxial cavity with eccentric inner rod," Int. J. Infrared Millim. Waves 22, 577-583 (2001).
[CrossRef]

1999

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

1996

B. N. Das and S. B. Chakrabarty, "Electromagnetic analysis of eccentric coaxial cylinders of finite length," J. Inst. Electron. Telecom. Eng. 42, 63-68 (1996).

1995

B. N. Das and S. B. Chakrabarty, "Evaluation of cut-off frequencies of higher order modes in eccentric coaxial line," IEE Proc. Microwaves Antennas Propag. 142, 350-356 (1995).
[CrossRef]

1988

A. Roberts and R. C. McPhedran, "Bandpass grids with annular apertures," IEEE Trans. Antennas Propag. 36, 607-611 (1988).
[CrossRef]

1983

R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1969

E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular innder conductor," Electron. Lett. 5, 251 (1969).
[CrossRef]

1966

H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentirc waveguides," IEEE Trans. Microwave Theory Tech. 14, 487 (1966).
[CrossRef]

Abaka, E.

E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular innder conductor," Electron. Lett. 5, 251 (1969).
[CrossRef]

Abdenour, A.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Adams, M. M.

Airola, M.

M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A-Pure Appl. Opt. 7, S118-S123 (2005).
[CrossRef]

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Audeh, N. F.

H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentirc waveguides," IEEE Trans. Microwave Theory Tech. 14, 487 (1966).
[CrossRef]

Baida, F. I.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
[CrossRef] [PubMed]

A. Moreau, G. Granet, F. I. Baida, and D. Van Labeke, "Light transmission by subwavelength square coaxial aperture arrays in metallic films," Opt. Express 11, 1131-1136 (2003).
[CrossRef] [PubMed]

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

Baier, W.

E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular innder conductor," Electron. Lett. 5, 251 (1969).
[CrossRef]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Bernal, M. P.

Blair, S.

T. Xu, X. Jiao, G. P. Zhang, and S. Blair, "Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement," Opt. Express 15, 13894-13906 (2007).
[CrossRef] [PubMed]

M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A-Pure Appl. Opt. 7, S118-S123 (2005).
[CrossRef]

Botten, L. C.

R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983).
[CrossRef]

Brolo, A. G.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
[CrossRef]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotechnol. 5, 291-294 (2006).
[CrossRef]

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
[CrossRef] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Brueck, S. R. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Express 13, 4406-4413 (2005).
[CrossRef] [PubMed]

Cao, H.

Chakrabarty, S. B.

B. N. Das and S. B. Chakrabarty, "Electromagnetic analysis of eccentric coaxial cylinders of finite length," J. Inst. Electron. Telecom. Eng. 42, 63-68 (1996).

B. N. Das and S. B. Chakrabarty, "Evaluation of cut-off frequencies of higher order modes in eccentric coaxial line," IEE Proc. Microwaves Antennas Propag. 142, 350-356 (1995).
[CrossRef]

Chang, S. H.

T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
[CrossRef]

Chang, Y. C.

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Chang, Y. T.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Chen, C. Y.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Cheng, B. Y.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Chu, J. Y.

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Chuang, T. H.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Compton, R. C.

R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983).
[CrossRef]

Corbman, J. D.

T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
[CrossRef]

Dadap, J. I.

Das, B. N.

B. N. Das and S. B. Chakrabarty, "Electromagnetic analysis of eccentric coaxial cylinders of finite length," J. Inst. Electron. Telecom. Eng. 42, 63-68 (1996).

B. N. Das and S. B. Chakrabarty, "Evaluation of cut-off frequencies of higher order modes in eccentric coaxial line," IEE Proc. Microwaves Antennas Propag. 142, 350-356 (1995).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

Degiron, A.

A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A-Pure Appl. Opt. 7, S90-S96 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Derrick, G. H.

R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983).
[CrossRef]

Dwir, B.

Ebbesen, T. W.

A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A-Pure Appl. Opt. 7, S90-S96 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Fan, W.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Fan, W. J.

W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Express 13, 4406-4413 (2005).
[CrossRef] [PubMed]

Fan, Z. Y.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

Gallot, G.

J. B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401 (2006).
[CrossRef]

Garcia-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Girard, C.

R. Quidant, and C. Girard, "Surface-plasmon-based optical manipulation," Laser Photon. Rev. 2, 47-57 (2008).
[CrossRef]

Girotto, E. M.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
[CrossRef]

Gordon, R.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
[CrossRef]

L. K. S. Kumar and R. Gordon, "Overlapping double-hole nanostructure in a metal film for localized field enhancement," IEEE J. Sel. Top. Quantum Electron. 12, 1228-1232 (2006).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88, 261104 (2006).
[CrossRef]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotechnol. 5, 291-294 (2006).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006).
[CrossRef]

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
[CrossRef] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Granet, G.

Hoffmann, P.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
[CrossRef] [PubMed]

Hughes, M.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Hughes, M. C.

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

Jeoung, S. C.

Jiao, X.

Jin, A. Z.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Jin, E.

E. Jin and X. Xu, "Radiation transfer through nanoscale apertures," J. Quantum Spectrosc. Radiat. Transfer 93, 163-173 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kavanagh, K. L.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
[CrossRef]

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Kim, D. S.

Kim, J. H.

J. H. Kim and P. J. Moyer, "Transmission characteristics of metallic equilateral triangular nanohole arrays," Appl. Phys. Lett. 89, 121106 (2006).
[CrossRef]

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Krishna, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Kuipers, L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88, 261104 (2006).
[CrossRef]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotechnol. 5, 291-294 (2006).
[CrossRef]

L. K. S. Kumar and R. Gordon, "Overlapping double-hole nanostructure in a metal film for localized field enhancement," IEEE J. Sel. Top. Quantum Electron. 12, 1228-1232 (2006).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Leathem, B.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Lee, J. W.

Lee, S. C.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Lesuffleur, A.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88, 261104 (2006).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Li, J. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Li, Z. Y.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Lienau, C.

Lin, M. W.

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Liu, K.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

Liu, R. J.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Liu, S. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Liu, Y.

M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A-Pure Appl. Opt. 7, S118-S123 (2005).
[CrossRef]

Luo, S. Y.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

Maillotte, H.

Malloy, K. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Express 13, 4406-4413 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Masson, J. B.

J. B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401 (2006).
[CrossRef]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

McPhedran, R. C.

A. Roberts and R. C. McPhedran, "Bandpass grids with annular apertures," IEEE Trans. Antennas Propag. 36, 607-611 (1988).
[CrossRef]

R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983).
[CrossRef]

Min, Q.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
[CrossRef]

Minhas, B.

W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Moreau, A.

Moreno, E.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Moyer, P. J.

J. H. Kim and P. J. Moyer, "Transmission characteristics of metallic equilateral triangular nanohole arrays," Appl. Phys. Lett. 89, 121106 (2006).
[CrossRef]

Mussot, A.

Nahata, A.

Osgood, R. M.

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, "Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures," Opt. Lett. 32, 3414-3416 (2007).
[CrossRef] [PubMed]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Panoiu, N. C.

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, "Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures," Opt. Lett. 32, 3414-3416 (2007).
[CrossRef] [PubMed]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Park, D. J.

Park, Q. H.

Perentes, A.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
[CrossRef] [PubMed]

Planken, P. C. M.

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Poujet, Y.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

Quan, M. Y.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

Quidant, R.

R. Quidant, and C. Girard, "Surface-plasmon-based optical manipulation," Laser Photon. Rev. 2, 47-57 (2008).
[CrossRef]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Reilly, T. H.

T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
[CrossRef]

Roberts, A.

A. Roberts and R. C. McPhedran, "Bandpass grids with annular apertures," IEEE Trans. Antennas Propag. 36, 607-611 (1988).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Roth, R. M.

Roussey, M.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
[CrossRef] [PubMed]

Rowlen, K. L.

T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
[CrossRef]

Salvi, J.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
[CrossRef] [PubMed]

Sandu, C.

Santos, M. J. L.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
[CrossRef]

Santschi, C.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

Sarrazin, M.

M. Sarrazin and J. P. Vigneron, "Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes," Opt. Commun. 240, 89-97 (2004).
[CrossRef]

Schatz, G. C.

T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
[CrossRef]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Seo, M. A.

Strelniker, Y. M.

Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays," Phys. Rev. B 76, 085409 (2007).
[CrossRef]

Sun, M.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Sylvestre, T.

Tsai, M. W.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Utke, I.

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005).
[CrossRef] [PubMed]

A. Moreau, G. Granet, F. I. Baida, and D. Van Labeke, "Light transmission by subwavelength square coaxial aperture arrays in metallic films," Opt. Express 11, 1131-1136 (2003).
[CrossRef] [PubMed]

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

Vigneron, J. P.

M. Sarrazin and J. P. Vigneron, "Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes," Opt. Commun. 240, 89-97 (2004).
[CrossRef]

Wang, J. K.

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Wang, Q. J.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Wang, T. J.

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Wang, Z. B.

Wu, S.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Xia, Y. X.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

Xu, T.

Xu, X.

E. Jin and X. Xu, "Radiation transfer through nanoscale apertures," J. Quantum Spectrosc. Radiat. Transfer 93, 163-173 (2005).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Yan, D. S.

Yang, H. F.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Ye, Y. H.

Yee, H. Y.

H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentirc waveguides," IEEE Trans. Microwave Theory Tech. 14, 487 (1966).
[CrossRef]

Yeh, J. T.

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Yin, X. G.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Zhan, L.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

Zhang, D. Z.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Zhang, G. P.

Zhang, J. Y.

Zhang, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Express 13, 4406-4413 (2005).
[CrossRef] [PubMed]

Zhang, S. C.

S. C. Zhang, "Eigenfrequency shift of higher-order modes in a coaxial cavity with eccentric inner rod," Int. J. Infrared Millim. Waves 22, 577-583 (2001).
[CrossRef]

Zhang, W.

W. Zhang, "Resonant terahertz transmission in plasmonic arrays of subwavelength holes," European Physical Journal-Applied Physics 43, 1-18 (2008).
[CrossRef]

Zhu, D.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Zhu, Y. Y.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Appl. Phys. A-Matter Sci. Process.

J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007).
[CrossRef]

Appl. Phys. B-Lasers Opt.

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006).
[CrossRef]

Appl. Phys. Lett.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88, 261104 (2006).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

J. H. Kim and P. J. Moyer, "Transmission characteristics of metallic equilateral triangular nanohole arrays," Appl. Phys. Lett. 89, 121106 (2006).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004).
[CrossRef]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).

Chem. Rev.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

Electron. Lett.

E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular innder conductor," Electron. Lett. 5, 251 (1969).
[CrossRef]

European Physical Journal-Applied Physics

W. Zhang, "Resonant terahertz transmission in plasmonic arrays of subwavelength holes," European Physical Journal-Applied Physics 43, 1-18 (2008).
[CrossRef]

IEE Proc. Microwaves Antennas Propag.

B. N. Das and S. B. Chakrabarty, "Evaluation of cut-off frequencies of higher order modes in eccentric coaxial line," IEE Proc. Microwaves Antennas Propag. 142, 350-356 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. K. S. Kumar and R. Gordon, "Overlapping double-hole nanostructure in a metal film for localized field enhancement," IEEE J. Sel. Top. Quantum Electron. 12, 1228-1232 (2006).
[CrossRef]

IEEE Trans. Antennas Propag.

A. Roberts and R. C. McPhedran, "Bandpass grids with annular apertures," IEEE Trans. Antennas Propag. 36, 607-611 (1988).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentirc waveguides," IEEE Trans. Microwave Theory Tech. 14, 487 (1966).
[CrossRef]

IEEE Trans. Nanotechnol.

R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotechnol. 5, 291-294 (2006).
[CrossRef]

Infrared Phys.

R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983).
[CrossRef]

Int. J. Infrared Millim. Waves

S. C. Zhang, "Eigenfrequency shift of higher-order modes in a coaxial cavity with eccentric inner rod," Int. J. Infrared Millim. Waves 22, 577-583 (2001).
[CrossRef]

J. Inst. Electron. Telecom. Eng.

B. N. Das and S. B. Chakrabarty, "Electromagnetic analysis of eccentric coaxial cylinders of finite length," J. Inst. Electron. Telecom. Eng. 42, 63-68 (1996).

J. Opt. A-Pure Appl. Opt.

A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A-Pure Appl. Opt. 7, S90-S96 (2005).
[CrossRef]

M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A-Pure Appl. Opt. 7, S118-S123 (2005).
[CrossRef]

J. Phys. Chem. C

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007).
[CrossRef]

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008).
[CrossRef]

T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007).
[CrossRef]

J. Quantum Spectrosc. Radiat. Transfer

E. Jin and X. Xu, "Radiation transfer through nanoscale apertures," J. Quantum Spectrosc. Radiat. Transfer 93, 163-173 (2005).
[CrossRef]

Laser Photon. Rev.

R. Quidant, and C. Girard, "Surface-plasmon-based optical manipulation," Laser Photon. Rev. 2, 47-57 (2008).
[CrossRef]

Nano Lett.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Opt. Commun.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

M. Sarrazin and J. P. Vigneron, "Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes," Opt. Commun. 240, 89-97 (2004).
[CrossRef]

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Nanostruct. Fundam. Appl.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006).
[CrossRef]

Phys. Lett. A

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007).
[CrossRef]

Phys. Rev. B

Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays," Phys. Rev. B 76, 085409 (2007).
[CrossRef]

J. B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Other

C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides (Springer New York, 2008).
[CrossRef]

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of eccentric cylindrical coaxial waveguide in gold with air gap. (b) Equivalent structures to calculate radial contribution to effective index assuming at each angle that the structure is rotationally symmetric. (c) Effective index of the rotationally symmetric structure is equivalent to a dielectric inside a coaxial perfect electric conductor (PEC). (d) Angular dependence, using effective index values calculated from the radial dependence at each angle.

Fig. 2.
Fig. 2.

Comparison of lowest order mode effective index (βc/ω) calculated by the effective index method (line) and calculated by a comprehensive vectorial FDMS (crosses). The structure chosen is gold, with an air gap, an outer cylinder radius of 286 nm, and an inner island radius of 224 nm. The inner island is offset to produce different narrowest gap values.

Fig. 3.
Fig. 3.

Amplitude squared of electric field of lowest order mode calculated using calculated by the effective index method for eccentric coaxial structure, described in Fig. 2, with offset of 0 nm, 45 nm, and 60 nm (black, red, blue). The 60 nm offset has a 2 nm narrowest gap, which leads to strong field localization.

Fig. 4.
Fig. 4.

Axial component of the electric field intensity for the same structures as in Fig. 3, with offsets of d= 0 nm, 45 nm, and 60 nm (left to right). Normalized color scale: red − 1, blue − 0.

Fig. 5.
Fig. 5.

Effective index calculations for (a) gold and (b) silver in the visible – near-IR region. EIM: effective index method; FEM: finite element method; FDMS: finite difference mode solver.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 E z r 2 + 1 r E z r + 1 r 2 2 E z θ 2 + 2 E z z 2 + ω 2 c 2 ε z E z = 0 ,
AB CD = 0 ,
A = I 0 ( p 2 a ) I 0 ( p 1 a ) ε 2 p 1 I 1 ( p 2 a ) ε 1 p 2 I 1 ( p 2 a )
B = ε 2 p 1 K 1 ( p 2 b ) ε 3 p 2 K 1 ( p 3 b ) K 0 ( p 2 b ) K 0 ( p 3 b )
C = K 0 ( p 2 a ) I 0 ( p 1 a ) ε 2 p 1 K 1 ( p 2 a ) ε 1 p 2 I 1 ( p 1 a )
D = ε 2 p 1 I 1 ( p 2 b ) ε 3 p 2 K 1 ( p 3 b ) I 0 ( p 2 b ) K 0 ( p 3 b )
1 r 2 2 E z θ 2 β 2 E z + ω 2 c 2 n eff 2 ( θ ) E z = 0 ,

Metrics