Abstract

We design a distributed feedback guided-wave device in liquid crystals, utilizing a simple geometry based on electro-optic molecular reorientation in uniaxial nematics. We numerically test the structure and demonstrate an effective Bragg reflector with voltage-tunable resonance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I.C. Khoo, Liquid Crystals: physical properties and nonlinear optical phenomena (Wiley, New York, 1995).
  2. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystals (John Wiley & Sons, New York, 2006).
    [CrossRef]
  3. A. d’Alessandro and R. Asquini, “Liquid Crystal Devices for photonic switching applications: State of the Art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
    [CrossRef]
  4. C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photon. Technol. Lett. 16, 1849–1851 (2004).
    [CrossRef]
  5. R. Asquini, A. Fratalocchi, A. d’Alessandro, and G. Assanto, “Electro-optic routing in a nematic liquid crystal waveguide,” Appl. Opt. 44, 4136–4143 (2005).
    [CrossRef] [PubMed]
  6. M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
    [CrossRef]
  7. A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13, 32–37 (2005).
    [CrossRef] [PubMed]
  8. A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
    [CrossRef]
  9. A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
    [CrossRef]
  10. C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
    [CrossRef]
  11. A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in Liquid Crystals on Silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
    [CrossRef]
  12. A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “Discrete Propagation and Spatial Solitons in Nematic Liquid Crystals,” Opt. Lett. 29, 1530–1532 (2004).
    [CrossRef] [PubMed]
  13. A. Fratalocchi and G. Assanto, “Nonlinear All-optical Switch with nematic liquid crystals,” Appl. Phys. Lett. 86, 051109 (2005).
    [CrossRef]
  14. A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “All-optical switching and beam steering in tunable waveguide arrays,” Appl. Phys. Lett. 86, 51112 (2005).
    [CrossRef]
  15. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nature Phys. 2, 737–742 (2006).
    [CrossRef]
  16. C. Kamaga, Y. Segawa, S. Tikhodeev, and T. Ishihara, “Optical fuse effect in a tunable liquid crystal waveguide with a Cr grating coupler,” Appl. Phys. Lett. 91, 173119 (2007).
    [CrossRef]
  17. G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: from bulk to discrete,” Opt. Express 15, 5248–5259 (2007).
    [CrossRef] [PubMed]
  18. A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett. 33, 1641–1643 (2008).
    [CrossRef] [PubMed]
  19. L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
    [CrossRef]
  20. U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
    [CrossRef]
  21. A. d’Alessandro, D. Donisi, R. Beccherelli, R. Asquini, L. De Sio, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16, 9254–9260 (2008).
    [CrossRef] [PubMed]
  22. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306 (2008).
    [CrossRef]
  23. F. C. Frank, “On the theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
    [CrossRef]
  24. C. Coutal, A. Azema, and J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288, 248–253 (1996).
    [CrossRef]

2008 (4)

A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett. 33, 1641–1643 (2008).
[CrossRef] [PubMed]

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

A. d’Alessandro, D. Donisi, R. Beccherelli, R. Asquini, L. De Sio, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16, 9254–9260 (2008).
[CrossRef] [PubMed]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306 (2008).
[CrossRef]

2007 (4)

C. Kamaga, Y. Segawa, S. Tikhodeev, and T. Ishihara, “Optical fuse effect in a tunable liquid crystal waveguide with a Cr grating coupler,” Appl. Phys. Lett. 91, 173119 (2007).
[CrossRef]

G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: from bulk to discrete,” Opt. Express 15, 5248–5259 (2007).
[CrossRef] [PubMed]

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in Liquid Crystals on Silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

2006 (3)

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nature Phys. 2, 737–742 (2006).
[CrossRef]

2005 (4)

A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13, 32–37 (2005).
[CrossRef] [PubMed]

A. Fratalocchi and G. Assanto, “Nonlinear All-optical Switch with nematic liquid crystals,” Appl. Phys. Lett. 86, 051109 (2005).
[CrossRef]

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “All-optical switching and beam steering in tunable waveguide arrays,” Appl. Phys. Lett. 86, 51112 (2005).
[CrossRef]

R. Asquini, A. Fratalocchi, A. d’Alessandro, and G. Assanto, “Electro-optic routing in a nematic liquid crystal waveguide,” Appl. Opt. 44, 4136–4143 (2005).
[CrossRef] [PubMed]

2004 (2)

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photon. Technol. Lett. 16, 1849–1851 (2004).
[CrossRef]

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “Discrete Propagation and Spatial Solitons in Nematic Liquid Crystals,” Opt. Lett. 29, 1530–1532 (2004).
[CrossRef] [PubMed]

2003 (1)

A. d’Alessandro and R. Asquini, “Liquid Crystal Devices for photonic switching applications: State of the Art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

2002 (1)

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

2000 (1)

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

1996 (1)

C. Coutal, A. Azema, and J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288, 248–253 (1996).
[CrossRef]

1958 (1)

F. C. Frank, “On the theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Abbate, G.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

Alberucci, A.

Asquini, R.

A. d’Alessandro, D. Donisi, R. Beccherelli, R. Asquini, L. De Sio, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16, 9254–9260 (2008).
[CrossRef] [PubMed]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13, 32–37 (2005).
[CrossRef] [PubMed]

R. Asquini, A. Fratalocchi, A. d’Alessandro, and G. Assanto, “Electro-optic routing in a nematic liquid crystal waveguide,” Appl. Opt. 44, 4136–4143 (2005).
[CrossRef] [PubMed]

A. d’Alessandro and R. Asquini, “Liquid Crystal Devices for photonic switching applications: State of the Art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

Assanto, G.

A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett. 33, 1641–1643 (2008).
[CrossRef] [PubMed]

G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: from bulk to discrete,” Opt. Express 15, 5248–5259 (2007).
[CrossRef] [PubMed]

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in Liquid Crystals on Silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nature Phys. 2, 737–742 (2006).
[CrossRef]

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “All-optical switching and beam steering in tunable waveguide arrays,” Appl. Phys. Lett. 86, 51112 (2005).
[CrossRef]

A. Fratalocchi and G. Assanto, “Nonlinear All-optical Switch with nematic liquid crystals,” Appl. Phys. Lett. 86, 051109 (2005).
[CrossRef]

R. Asquini, A. Fratalocchi, A. d’Alessandro, and G. Assanto, “Electro-optic routing in a nematic liquid crystal waveguide,” Appl. Opt. 44, 4136–4143 (2005).
[CrossRef] [PubMed]

A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13, 32–37 (2005).
[CrossRef] [PubMed]

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “Discrete Propagation and Spatial Solitons in Nematic Liquid Crystals,” Opt. Lett. 29, 1530–1532 (2004).
[CrossRef] [PubMed]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Azema, A.

C. Coutal, A. Azema, and J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288, 248–253 (1996).
[CrossRef]

Beccherelli, R.

A. d’Alessandro, D. Donisi, R. Beccherelli, R. Asquini, L. De Sio, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16, 9254–9260 (2008).
[CrossRef] [PubMed]

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

Beeckman, J.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Bellini, B.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

Brasselet, E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306 (2008).
[CrossRef]

Breglio, G.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

Brzdakiewicz, K.

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “All-optical switching and beam steering in tunable waveguide arrays,” Appl. Phys. Lett. 86, 51112 (2005).
[CrossRef]

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “Discrete Propagation and Spatial Solitons in Nematic Liquid Crystals,” Opt. Lett. 29, 1530–1532 (2004).
[CrossRef] [PubMed]

Caputo, R.

Chen, D.

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

Chen, L.-W.

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photon. Technol. Lett. 16, 1849–1851 (2004).
[CrossRef]

Coppola, G.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

Coutal, C.

C. Coutal, A. Azema, and J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288, 248–253 (1996).
[CrossRef]

d’Alessandro, A.

A. d’Alessandro, D. Donisi, R. Beccherelli, R. Asquini, L. De Sio, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16, 9254–9260 (2008).
[CrossRef] [PubMed]

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

R. Asquini, A. Fratalocchi, A. d’Alessandro, and G. Assanto, “Electro-optic routing in a nematic liquid crystal waveguide,” Appl. Opt. 44, 4136–4143 (2005).
[CrossRef] [PubMed]

A. d’Alessandro and R. Asquini, “Liquid Crystal Devices for photonic switching applications: State of the Art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

D’have, K.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Desimpel, C.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Donisi, D.

A. d’Alessandro, D. Donisi, R. Beccherelli, R. Asquini, L. De Sio, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16, 9254–9260 (2008).
[CrossRef] [PubMed]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

Dyadyusha, A.

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nature Phys. 2, 737–742 (2006).
[CrossRef]

Falco, A. Di

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in Liquid Crystals on Silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

Frank, F. C.

F. C. Frank, “On the theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Fratalocchi, A.

Ishihara, T.

C. Kamaga, Y. Segawa, S. Tikhodeev, and T. Ishihara, “Optical fuse effect in a tunable liquid crystal waveguide with a Cr grating coupler,” Appl. Phys. Lett. 91, 173119 (2007).
[CrossRef]

Kaczmarek, M.

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nature Phys. 2, 737–742 (2006).
[CrossRef]

Kamaga, C.

C. Kamaga, Y. Segawa, S. Tikhodeev, and T. Ishihara, “Optical fuse effect in a tunable liquid crystal waveguide with a Cr grating coupler,” Appl. Phys. Lett. 91, 173119 (2007).
[CrossRef]

Karpierz, M.

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

Karpierz, M. A.

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “All-optical switching and beam steering in tunable waveguide arrays,” Appl. Phys. Lett. 86, 51112 (2005).
[CrossRef]

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “Discrete Propagation and Spatial Solitons in Nematic Liquid Crystals,” Opt. Lett. 29, 1530–1532 (2004).
[CrossRef] [PubMed]

Khoo, I. C.

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Khoo, I.C.

I.C. Khoo, Liquid Crystals: physical properties and nonlinear optical phenomena (Wiley, New York, 1995).

Kivshar, Y.

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306 (2008).
[CrossRef]

Krolikowski, W.

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

Laudyn, U.

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

Liu, C.-Y.

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photon. Technol. Lett. 16, 1849–1851 (2004).
[CrossRef]

Luca, A. De

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Manolis, I.

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

Miroshnichenko, A.

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306 (2008).
[CrossRef]

Neyts, K.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Oton, M. J.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

Peccianti, M.

G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: from bulk to discrete,” Opt. Express 15, 5248–5259 (2007).
[CrossRef] [PubMed]

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nature Phys. 2, 737–742 (2006).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Righini, G. C.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

Roustan, J. C.

C. Coutal, A. Azema, and J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288, 248–253 (1996).
[CrossRef]

Rudquist, P.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Segawa, Y.

C. Kamaga, Y. Segawa, S. Tikhodeev, and T. Ishihara, “Optical fuse effect in a tunable liquid crystal waveguide with a Cr grating coupler,” Appl. Phys. Lett. 91, 173119 (2007).
[CrossRef]

Sio, L. De

Sirleto, L.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

Thourhout, D. Van

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Tikhodeev, S.

C. Kamaga, Y. Segawa, S. Tikhodeev, and T. Ishihara, “Optical fuse effect in a tunable liquid crystal waveguide with a Cr grating coupler,” Appl. Phys. Lett. 91, 173119 (2007).
[CrossRef]

Umeton, C.

A. d’Alessandro, D. Donisi, R. Beccherelli, R. Asquini, L. De Sio, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16, 9254–9260 (2008).
[CrossRef] [PubMed]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Verstuyft, S.

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Wu, S. T.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystals (John Wiley & Sons, New York, 2006).
[CrossRef]

Yang, D. K.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystals (John Wiley & Sons, New York, 2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically Assisted Self-Confinement and Waveguiding in planar Nematic Liquid Crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

A. Fratalocchi and G. Assanto, “Nonlinear All-optical Switch with nematic liquid crystals,” Appl. Phys. Lett. 86, 051109 (2005).
[CrossRef]

A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. A. Karpierz, “All-optical switching and beam steering in tunable waveguide arrays,” Appl. Phys. Lett. 86, 51112 (2005).
[CrossRef]

C. Kamaga, Y. Segawa, S. Tikhodeev, and T. Ishihara, “Optical fuse effect in a tunable liquid crystal waveguide with a Cr grating coupler,” Appl. Phys. Lett. 91, 173119 (2007).
[CrossRef]

U. Laudyn, A. Miroshnichenko, W. Krolikowski, D. Chen, Y. Kivshar, and M. Karpierz, “Observation of light-induced reorientation in periodic structures with planar nematic liquid crystal defects,” Appl. Phys. Lett. 92, 203304 (2008).
[CrossRef]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306 (2008).
[CrossRef]

Discuss. Faraday Soc. (1)

F. C. Frank, “On the theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Ferroel. (1)

A. d’Alessandro, R. Beccherelli, B. Bellini, I. Manolis, R. Asquini, and D. Donisi, “Integrated Optics Using Smectic and Nematic Liquid Crystals,” Ferroel. 344, 247–254 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photon. Technol. Lett. 16, 1849–1851 (2004).
[CrossRef]

IEEE Trans. Electron Dev. (1)

C. Desimpel, J. Beeckman, K. Neyts, S. Verstuyft, D. Van Thourhout, K. D’have, and P. Rudquist, “Realization of a Four-Electrode LC Device with In-Plane Rotation,” IEEE Trans. Electron Dev. 54, 1295–1300 (2007).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

A. d’Alessandro and R. Asquini, “Liquid Crystal Devices for photonic switching applications: State of the Art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

Nature Phys. (1)

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, “Tunable refraction and reflection of self-confined light beams,” Nature Phys. 2, 737–742 (2006).
[CrossRef]

Opt. Commun. (1)

A. Di Falco and G. Assanto, “Tunable wavelength-selective add-drop in Liquid Crystals on Silicon microresonator,” Opt. Commun. 279, 210–213 (2007).
[CrossRef]

Opt. Eng. (1)

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and M. J. Oton, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer,” Opt. Eng. 41, 2890–2898 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Thin Solid Films (1)

C. Coutal, A. Azema, and J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288, 248–253 (1996).
[CrossRef]

Other (2)

I.C. Khoo, Liquid Crystals: physical properties and nonlinear optical phenomena (Wiley, New York, 1995).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystals (John Wiley & Sons, New York, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic drawing of the DFBW structure with planarly anchored NLC.

Fig. 2.
Fig. 2.

Distribution of the molecular director for an applied voltage of 3V and corresponding electric field distribution (red arrows): (a) Elevation and (c) twist under the wide ribs of the top electrode; (b) elevation and (d) twist under the central stem of the top electrode, respectively.

Fig. 3.
Fig. 3.

Refractive index profile for TM polarized light, corresponding to the reorientation in Fig. 2 under (a) the wide ribs or (b) the central stem, respectively.

Fig. 4.
Fig. 4.

Quasi-TM mode profile of an electrically assisted NLC waveguide: the color map shows the normalized power flow, the arrows indicate the electric displacement under the ΔT-wide rib.

Fig. 5.
Fig. 5.

Refractive index profile 100nm below the top electrode for various biases and TM-polarized light.

Fig. 6.
Fig. 6.

(a) The DFBW spectral response in reflection. The peak is 99% and the FWHM is 0.38nm. (b) DFBW reflectivity for various voltages: 3V (blue), 2.8V (green), 2.5V (red). Peak values (FWHM) are 83% (0.23nm), 97% (0.32nm) and 99% (0.38nm) from left to right, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F d = 1 2 K 11 ( n ̂ ) 2 + 1 2 K 22 ( n ̂ × n ̂ ) 2 + 1 2 K 33 ( n ̂ × × n ̂ ) 2 + F field
F field = 1 2 D E time = ε 0 1 2 Δ ε LF ( n ̂ E LF ) 2 + g
{ F d ϑ j x y z j F d ϑ j = 0 F d ρ j x y z j F d ρ j = 0
K xy 2 θ + 1 2 ε 0 Δ ε LF E LF x 2 sin 2 θ = 0
x [ ( ε + Δ ε LF sin 2 θ ) V x ] + n o 2 V y = 0

Metrics