Abstract

In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
DFB semiconductor lasers based on reconstruction-equivalent-chirp technology

Yitang Dai and Xiangfei Chen
Opt. Express 15(5) 2348-2353 (2007)

Experimental demonstration of DFB semiconductor lasers with varying longitudinal parameters

Simin Li, Renjia Guo, Lianyan Li, Yuechun Shi, Jun Lu, Linlin Lu, Junshou Zheng, and Xiangfei Chen
Opt. Express 22(4) 4059-4064 (2014)

Dual-wavelength distributed feedback fiber laser based on double exposure and equivalent phase shift method

Linghui Jia, Zuowei Yin, Liang Zhang, and Xiangfei Chen
Appl. Opt. 50(4) 604-607 (2011)

References

  • View by:
  • |
  • |
  • |

  1. X. Jia, D. Zhong, F. Wang, and H. Chen, “Dynamic single-mode and modulation characteristics analyses for λ4 phase-shifted distributed feedback lasers with chirped grating,” Opt. Commun. 279, 356–363 (2007).
    [Crossref]
  2. F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser,” IEEE Photon. Technol. Lett. 18, 2563–2565 (2006).
    [Crossref]
  3. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
    [Crossref]
  4. Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
    [Crossref]
  5. H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
    [Crossref]
  6. J. Hong, W. P. Huang, T. Makino, and G. Pakulski, “Static and dynamic characteristics of MQW DFB lasers with varying ridge width,” IEE Proc. Optoelectron. 141, 303–310 (1994).
    [Crossref]
  7. W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt. 127,1377–1380 (1988).
    [Crossref]
  8. H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
    [Crossref]
  9. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29,1333–1335 (2004).
    [Crossref] [PubMed]
  10. D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
    [Crossref]
  11. Y. Dai, X. Chen, Y Zhang, J. Sun, and S. Xie, “Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method,” OFC’2007, JWA28 (2007).
  12. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique,” Opt. Lett. 31, 1618–1620(2006).
    [Crossref] [PubMed]
  13. Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 19, 1916–1918 (2007).
    [Crossref]
  14. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction equivalent chirp technology,” Opt. Express. 15, 2348–2353 (2007).
    [Crossref] [PubMed]
  15. I. P. Kaminow, “Optical Integrated Circuits: A Personal Perspective,” J. Lightwave Technol. 26, 994–1004 (2008).
    [Crossref]
  16. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
    [Crossref]
  17. S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory,” IEEE J. Quantum Electron. 30, 2477–2484 (1994).
    [Crossref]
  18. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of l/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
    [Crossref]

2008 (1)

2007 (4)

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 19, 1916–1918 (2007).
[Crossref]

Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction equivalent chirp technology,” Opt. Express. 15, 2348–2353 (2007).
[Crossref] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
[Crossref]

X. Jia, D. Zhong, F. Wang, and H. Chen, “Dynamic single-mode and modulation characteristics analyses for λ4 phase-shifted distributed feedback lasers with chirped grating,” Opt. Commun. 279, 356–363 (2007).
[Crossref]

2006 (2)

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser,” IEEE Photon. Technol. Lett. 18, 2563–2565 (2006).
[Crossref]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique,” Opt. Lett. 31, 1618–1620(2006).
[Crossref] [PubMed]

2005 (1)

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
[Crossref]

2004 (3)

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
[Crossref]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29,1333–1335 (2004).
[Crossref] [PubMed]

1997 (1)

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

1995 (1)

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

1994 (2)

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, “Static and dynamic characteristics of MQW DFB lasers with varying ridge width,” IEE Proc. Optoelectron. 141, 303–310 (1994).
[Crossref]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory,” IEEE J. Quantum Electron. 30, 2477–2484 (1994).
[Crossref]

1989 (1)

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of l/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[Crossref]

1988 (1)

W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt. 127,1377–1380 (1988).
[Crossref]

Armistead, C. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of l/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[Crossref]

Burkhard, H.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory,” IEEE J. Quantum Electron. 30, 2477–2484 (1994).
[Crossref]

Chan, W. K.

W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt. 127,1377–1380 (1988).
[Crossref]

Chen, H.

X. Jia, D. Zhong, F. Wang, and H. Chen, “Dynamic single-mode and modulation characteristics analyses for λ4 phase-shifted distributed feedback lasers with chirped grating,” Opt. Commun. 279, 356–363 (2007).
[Crossref]

Chen, X.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 19, 1916–1918 (2007).
[Crossref]

Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction equivalent chirp technology,” Opt. Express. 15, 2348–2353 (2007).
[Crossref] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
[Crossref]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique,” Opt. Lett. 31, 1618–1620(2006).
[Crossref] [PubMed]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29,1333–1335 (2004).
[Crossref] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
[Crossref]

Y. Dai, X. Chen, Y Zhang, J. Sun, and S. Xie, “Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method,” OFC’2007, JWA28 (2007).

Chung, J.

W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt. 127,1377–1380 (1988).
[Crossref]

Collar, A. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of l/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[Crossref]

Contolini, R. J.

W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt. 127,1377–1380 (1988).
[Crossref]

Dai, Y.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 19, 1916–1918 (2007).
[Crossref]

Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction equivalent chirp technology,” Opt. Express. 15, 2348–2353 (2007).
[Crossref] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
[Crossref]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique,” Opt. Lett. 31, 1618–1620(2006).
[Crossref] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
[Crossref]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29,1333–1335 (2004).
[Crossref] [PubMed]

Y. Dai, X. Chen, Y Zhang, J. Sun, and S. Xie, “Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method,” OFC’2007, JWA28 (2007).

De La Rue, R. M.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser,” IEEE Photon. Technol. Lett. 18, 2563–2565 (2006).
[Crossref]

Fan, C.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
[Crossref]

Funabashi, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Grabmaier, A.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

Hansmann, S.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory,” IEEE J. Quantum Electron. 30, 2477–2484 (1994).
[Crossref]

Hillmer, H.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory,” IEEE J. Quantum Electron. 30, 2477–2484 (1994).
[Crossref]

Hong, J.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, “Static and dynamic characteristics of MQW DFB lasers with varying ridge width,” IEE Proc. Optoelectron. 141, 303–310 (1994).
[Crossref]

Huang, W. P.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, “Static and dynamic characteristics of MQW DFB lasers with varying ridge width,” IEE Proc. Optoelectron. 141, 303–310 (1994).
[Crossref]

Itaya, Y.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Ji, H.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 19, 1916–1918 (2007).
[Crossref]

Jia, X.

X. Jia, D. Zhong, F. Wang, and H. Chen, “Dynamic single-mode and modulation characteristics analyses for λ4 phase-shifted distributed feedback lasers with chirped grating,” Opt. Commun. 279, 356–363 (2007).
[Crossref]

Jiang, D.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
[Crossref]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
[Crossref]

Kaminow, I. P.

Kasukawa, A.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Kimoto, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Kise, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Liu, H.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
[Crossref]

Liu, Y.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
[Crossref]

Magari, K.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

Makino, T.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, “Static and dynamic characteristics of MQW DFB lasers with varying ridge width,” IEE Proc. Optoelectron. 141, 303–310 (1994).
[Crossref]

Mukaihara, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Nasu, H.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Nomura, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Oike, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Otsuji, T.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Pakulski, G.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, “Static and dynamic characteristics of MQW DFB lasers with varying ridge width,” IEE Proc. Optoelectron. 141, 303–310 (1994).
[Crossref]

Penty, V.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
[Crossref]

Plumb, D. R.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
[Crossref]

Pozzi, F.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser,” IEEE Photon. Technol. Lett. 18, 2563–2565 (2006).
[Crossref]

Sano, A.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Sato, K.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Shinagawa, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Sorel, M.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser,” IEEE Photon. Technol. Lett. 18, 2563–2565 (2006).
[Crossref]

Sun, J.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique,” Opt. Lett. 31, 1618–1620(2006).
[Crossref] [PubMed]

Y. Dai, X. Chen, Y Zhang, J. Sun, and S. Xie, “Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method,” OFC’2007, JWA28 (2007).

Takagi, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Takaki, K.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Takeuchi, H.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Thompson, G. H. B.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of l/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[Crossref]

Tsuzuki, K.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Walter, H.

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory,” IEEE J. Quantum Electron. 30, 2477–2484 (1994).
[Crossref]

Wang, F.

X. Jia, D. Zhong, F. Wang, and H. Chen, “Dynamic single-mode and modulation characteristics analyses for λ4 phase-shifted distributed feedback lasers with chirped grating,” Opt. Commun. 279, 356–363 (2007).
[Crossref]

White, I. H.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
[Crossref]

White, J. K.

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
[Crossref]

Whiteaway, J. E. A.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of l/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[Crossref]

Xia, L.

Xie, S.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 19, 1916–1918 (2007).
[Crossref]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
[Crossref]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique,” Opt. Lett. 31, 1618–1620(2006).
[Crossref] [PubMed]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29,1333–1335 (2004).
[Crossref] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
[Crossref]

Y. Dai, X. Chen, Y Zhang, J. Sun, and S. Xie, “Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method,” OFC’2007, JWA28 (2007).

Yamamoto, M.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Yao, Y.

Yoneyama, M.

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

Zhang, Y

Y. Dai, X. Chen, Y Zhang, J. Sun, and S. Xie, “Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method,” OFC’2007, JWA28 (2007).

Zhang, Y.

Zhong, D.

X. Jia, D. Zhong, F. Wang, and H. Chen, “Dynamic single-mode and modulation characteristics analyses for λ4 phase-shifted distributed feedback lasers with chirped grating,” Opt. Commun. 279, 356–363 (2007).
[Crossref]

Zhu, H. L.

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

Appl. Opt. (1)

W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt. 127,1377–1380 (1988).
[Crossref]

IEE Proc. Optoelectron. (1)

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, “Static and dynamic characteristics of MQW DFB lasers with varying ridge width,” IEE Proc. Optoelectron. 141, 303–310 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory,” IEEE J. Quantum Electron. 30, 2477–2484 (1994).
[Crossref]

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of l/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (4)

H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard, and K. Magari, “Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides,” IEEE J. Sel. Top. Quantum. Electron. 1, 356–362 (1995).
[Crossref]

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum. Electron. 10, 312–320 (2004).
[Crossref]

Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Sel. Top. Quantum. Electron. 11,1112–1120 (2005).
[Crossref]

H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T. Otsuji, “Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser,” IEEE J. Sel. Top. Quantum. Electron. 3, 336–343 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (4)

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser,” IEEE Photon. Technol. Lett. 18, 2563–2565 (2006).
[Crossref]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A novel distributed feedback fiber laser based on equivalent phase shift,” IEEE Photon. Technol. Lett. 16, 2598–2600 (2004).
[Crossref]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2007).
[Crossref]

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings,” IEEE Photon. Technol. Lett. 19, 1916–1918 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

X. Jia, D. Zhong, F. Wang, and H. Chen, “Dynamic single-mode and modulation characteristics analyses for λ4 phase-shifted distributed feedback lasers with chirped grating,” Opt. Commun. 279, 356–363 (2007).
[Crossref]

Opt. Express. (1)

Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction equivalent chirp technology,” Opt. Express. 15, 2348–2353 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (1)

Y. Dai, X. Chen, Y Zhang, J. Sun, and S. Xie, “Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method,” OFC’2007, JWA28 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of the SEM morphology of: (a) sampled grating with a quarter-wave equivalent phase shift; (b) uniform Bragg gratings in a sampling period.

Fig. 2.
Fig. 2.

Typical laser spectrum of the REC based DFB laser at the injection current of 40mA.

Fig. 3.
Fig. 3.

(a). Light-current characteristic of the REC based DFB laser; (b) lasing wavelengths at different injection currents (above threshold) and temperatures.

Fig. 4.
Fig. 4.

Typical laser spectra at the injection currents of 27mA (a) and 100mA (b).

Fig. 5.
Fig. 5.

Typical laser spectra of the REC based DFB laser in a wide wavelength range at the injection currents of 70mA (a) and 140mA (b).

Fig. 6.
Fig. 6.

REC based DFB semiconductor laser with a different wavelength in a different part of the same chip at the injection current of 20mA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( z ) = s ( z ) exp ( j 2 πz Λ ) + c . c
s ( z ) = m F m exp ( j 2 mπz P )
Δ n m ( z ) = { F m exp ( j 2 πz Λ + j 2 mπz P ) z z 0 F m exp ( j 2 πz Λ + j 2 mπz P ) z > z 0
θ = 2 Δ P P

Metrics