Abstract

In this paper, we studied phase modulation numerically using metamaterials such as stacked structures of dual split ring resonators (DSRRs). To demonstrate the modulation, a vertical and a planar design were considered, where the wave vectors were parallel and perpendicular to the proposed structures creating 70 degrees and 80 degrees of phase change, respectively. In both of the designs modulation was brought about by changing the effective index of the structure through switching between the open and short states of the DSRRs while maintaining high transmission. One of the attractive features of our design was the thin layers of DSRRs, where for the vertical and planar models the DSRRs layers were 5 mm and 2.28 mm respectively. The numerical results obtained by simulation matched well with the theoretical prediction.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q1. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
    [CrossRef]
  2. R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of negative index of refraction, Science 292, 77-79, (2001).
    [CrossRef] [PubMed]
  3. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 153901(4) (2005).
    [CrossRef] [PubMed]
  4. Q2. Z. Sheng and V. Varadan, "Tuning the effective properties of metamaterials by changing the susbstrate," J. Appl. Phys. 101, 014909-1, (2007).
    [CrossRef]
  5. D. K. Ghodgaonkar, V.V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas. 39, 387-394, (1990).
    [CrossRef]
  6. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
    [CrossRef]
  7. K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896 (2004)
    [CrossRef] [PubMed]
  8. A. A. Zharov, I. V. Shadrivov, and Y.S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett. 91, 037401 (2003)
    [CrossRef] [PubMed]
  9. H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
    [CrossRef] [PubMed]
  10. Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
    [CrossRef]
  11. O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198, (2004).
    [CrossRef]
  12. P. He, P. Parimi, C. Vittoria, "Tunable negative refractive index metamaterial phase shifter," Electon. Lett. 43, (2007).
    [CrossRef]
  13. Q4. A. Velez, J. Bonache, "Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines," IEEE Microwave and Wirel. Compon. Lett. 18, 28-30, (2008).
    [CrossRef]
  14. Q5. D. Smith, S. Schultz, P. Markos and C. M. Soukoulis "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1, (2002).
    [CrossRef]
  15. Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
    [CrossRef]
  16. M. K. Karkkainen and P. Ikonen, "Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate," Microwave Opt. Technol.Lett. 46, 554-556, (2005).
    [CrossRef]
  17. S. Oh, L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave Opt. Technol.Lett. 48, 329-334, (2006).
    [CrossRef]
  18. Q7. S. Maslovski, P. Ikonen, I. kolmakov and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: metalsolenoid" Prog. Electromag. Res. 54, 61-81, (2005).
    [CrossRef]
  19. N. Katsarakis, T. Koschny and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945, (2004).
    [CrossRef]
  20. J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782, (2006).
    [CrossRef] [PubMed]
  21. M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
    [CrossRef]
  22. D. Dudley, W. Duncan, J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985,14-25 (2003).
    [CrossRef]
  23. K. Aydin, E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911-5, (2007).
    [CrossRef]
  24. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
    [CrossRef]
  25. C. Balanis, Antenna Theory, third edition (John Wiley & Sons, 2005), Chap. 6.
  26. Q8. T. Hand, S. Cummer, "Controllable magnetic metamaterial using digitally addressable split-ring resonator," IEEE Ant. Propag. Lett. (to be published).

2008 (3)

Q4. A. Velez, J. Bonache, "Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines," IEEE Microwave and Wirel. Compon. Lett. 18, 28-30, (2008).
[CrossRef]

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

2007 (3)

K. Aydin, E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911-5, (2007).
[CrossRef]

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Q2. Z. Sheng and V. Varadan, "Tuning the effective properties of metamaterials by changing the susbstrate," J. Appl. Phys. 101, 014909-1, (2007).
[CrossRef]

2006 (3)

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

S. Oh, L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave Opt. Technol.Lett. 48, 329-334, (2006).
[CrossRef]

J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782, (2006).
[CrossRef] [PubMed]

2005 (4)

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

Q7. S. Maslovski, P. Ikonen, I. kolmakov and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: metalsolenoid" Prog. Electromag. Res. 54, 61-81, (2005).
[CrossRef]

M. K. Karkkainen and P. Ikonen, "Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate," Microwave Opt. Technol.Lett. 46, 554-556, (2005).
[CrossRef]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

2004 (3)

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896 (2004)
[CrossRef] [PubMed]

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198, (2004).
[CrossRef]

N. Katsarakis, T. Koschny and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945, (2004).
[CrossRef]

2003 (2)

D. Dudley, W. Duncan, J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985,14-25 (2003).
[CrossRef]

A. A. Zharov, I. V. Shadrivov, and Y.S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett. 91, 037401 (2003)
[CrossRef] [PubMed]

2002 (1)

Q5. D. Smith, S. Schultz, P. Markos and C. M. Soukoulis "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1, (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of negative index of refraction, Science 292, 77-79, (2001).
[CrossRef] [PubMed]

1990 (1)

D. K. Ghodgaonkar, V.V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas. 39, 387-394, (1990).
[CrossRef]

1968 (1)

Q1. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
[CrossRef]

Acher, O.

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198, (2004).
[CrossRef]

Averitt, R.

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911-5, (2007).
[CrossRef]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896 (2004)
[CrossRef] [PubMed]

Azad, A.

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

Bonache, J.

Q4. A. Velez, J. Bonache, "Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines," IEEE Microwave and Wirel. Compon. Lett. 18, 28-30, (2008).
[CrossRef]

Bratkovsky, A.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Bulu, I.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

Chen, H. T.

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

Chen, H-T.

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

Cummer, S.

Q8. T. Hand, S. Cummer, "Controllable magnetic metamaterial using digitally addressable split-ring resonator," IEEE Ant. Propag. Lett. (to be published).

Dudley, D.

D. Dudley, W. Duncan, J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985,14-25 (2003).
[CrossRef]

Duncan, W.

D. Dudley, W. Duncan, J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985,14-25 (2003).
[CrossRef]

Econonou, E.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

Ghodgaonkar, D. K.

D. K. Ghodgaonkar, V.V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas. 39, 387-394, (1990).
[CrossRef]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

Gossard, A.

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

Gundogdu, T.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

Guven, K.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896 (2004)
[CrossRef] [PubMed]

Hand, T.

Q8. T. Hand, S. Cummer, "Controllable magnetic metamaterial using digitally addressable split-ring resonator," IEEE Ant. Propag. Lett. (to be published).

Ikonen, P.

M. K. Karkkainen and P. Ikonen, "Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate," Microwave Opt. Technol.Lett. 46, 554-556, (2005).
[CrossRef]

Q7. S. Maslovski, P. Ikonen, I. kolmakov and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: metalsolenoid" Prog. Electromag. Res. 54, 61-81, (2005).
[CrossRef]

Islam, M.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Kafesaki, M.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

N. Katsarakis, T. Koschny and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945, (2004).
[CrossRef]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

Karkkainen, M. K.

M. K. Karkkainen and P. Ikonen, "Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate," Microwave Opt. Technol.Lett. 46, 554-556, (2005).
[CrossRef]

Katsarakis, N.

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896 (2004)
[CrossRef] [PubMed]

N. Katsarakis, T. Koschny and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945, (2004).
[CrossRef]

Kivshar, Y.S.

A. A. Zharov, I. V. Shadrivov, and Y.S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett. 91, 037401 (2003)
[CrossRef] [PubMed]

Koschny, T.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

N. Katsarakis, T. Koschny and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945, (2004).
[CrossRef]

Kuekes, P.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

Logeeswaran, V. J.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Markos, P.

Q5. D. Smith, S. Schultz, P. Markos and C. M. Soukoulis "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1, (2002).
[CrossRef]

Maslovski, S.

Q7. S. Maslovski, P. Ikonen, I. kolmakov and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: metalsolenoid" Prog. Electromag. Res. 54, 61-81, (2005).
[CrossRef]

Oh, S.

S. Oh, L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave Opt. Technol.Lett. 48, 329-334, (2006).
[CrossRef]

Ohara, J.

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

Ozbay, E.

K. Aydin, E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911-5, (2007).
[CrossRef]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896 (2004)
[CrossRef] [PubMed]

Padilla, W. J.

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

Penciu, R.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782, (2006).
[CrossRef] [PubMed]

Reynet, O.

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198, (2004).
[CrossRef]

Schultz, S.

Q5. D. Smith, S. Schultz, P. Markos and C. M. Soukoulis "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1, (2002).
[CrossRef]

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of negative index of refraction, Science 292, 77-79, (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782, (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

Shadrivov, I. V.

A. A. Zharov, I. V. Shadrivov, and Y.S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett. 91, 037401 (2003)
[CrossRef] [PubMed]

Shafai, L.

S. Oh, L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave Opt. Technol.Lett. 48, 329-334, (2006).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of negative index of refraction, Science 292, 77-79, (2001).
[CrossRef] [PubMed]

Sheng, Z.

Q2. Z. Sheng and V. Varadan, "Tuning the effective properties of metamaterials by changing the susbstrate," J. Appl. Phys. 101, 014909-1, (2007).
[CrossRef]

Shrekenhamer, D.

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

Slaughter, J.

D. Dudley, W. Duncan, J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985,14-25 (2003).
[CrossRef]

Smith, D.

Q5. D. Smith, S. Schultz, P. Markos and C. M. Soukoulis "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1, (2002).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782, (2006).
[CrossRef] [PubMed]

Smith, D.R.

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of negative index of refraction, Science 292, 77-79, (2001).
[CrossRef] [PubMed]

Soukoulis, C.

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

Soukoulis, C. M.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896 (2004)
[CrossRef] [PubMed]

Q5. D. Smith, S. Schultz, P. Markos and C. M. Soukoulis "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1, (2002).
[CrossRef]

Stameroff, A.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Taylor, A.

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

Varadan, V.

Q2. Z. Sheng and V. Varadan, "Tuning the effective properties of metamaterials by changing the susbstrate," J. Appl. Phys. 101, 014909-1, (2007).
[CrossRef]

Varadan, V. K.

D. K. Ghodgaonkar, V.V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas. 39, 387-394, (1990).
[CrossRef]

Varadan, V.V.

D. K. Ghodgaonkar, V.V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas. 39, 387-394, (1990).
[CrossRef]

Velez, A.

Q4. A. Velez, J. Bonache, "Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines," IEEE Microwave and Wirel. Compon. Lett. 18, 28-30, (2008).
[CrossRef]

Veselago, V. G.

Q1. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
[CrossRef]

Wang, S.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Williams, R.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Wu, W.

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Zharov, A. A.

A. A. Zharov, I. V. Shadrivov, and Y.S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett. 91, 037401 (2003)
[CrossRef] [PubMed]

Zide, J.

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

Appl. Phys. A (1)

Q3. V. J. Logeeswaran, A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A 87, 209-216, (2007).
[CrossRef]

Appl. Phys. Lett. (2)

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198, (2004).
[CrossRef]

N. Katsarakis, T. Koschny and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945, (2004).
[CrossRef]

IEEE Ant. Propag. Lett. (1)

Q8. T. Hand, S. Cummer, "Controllable magnetic metamaterial using digitally addressable split-ring resonator," IEEE Ant. Propag. Lett. (to be published).

IEEE Microwave and Wirel. Compon. Lett. (1)

Q4. A. Velez, J. Bonache, "Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines," IEEE Microwave and Wirel. Compon. Lett. 18, 28-30, (2008).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

D. K. Ghodgaonkar, V.V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas. 39, 387-394, (1990).
[CrossRef]

J. Appl. Phys. (2)

Q2. Z. Sheng and V. Varadan, "Tuning the effective properties of metamaterials by changing the susbstrate," J. Appl. Phys. 101, 014909-1, (2007).
[CrossRef]

K. Aydin, E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911-5, (2007).
[CrossRef]

J. Opt. A: Pure and Appl. Opt. (1)

M. Kafesaki, T. Koschny, R. Penciu, T. Gundogdu, E. Econonou and C. Soukoulis, "Left-handed Metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure and Appl. Opt. 7, S21-S22, (2005).
[CrossRef]

Microwave Opt. Technol.Lett. (2)

M. K. Karkkainen and P. Ikonen, "Patch antenna with stacked split-ring resonators as artificial magneto-dielectric substrate," Microwave Opt. Technol.Lett. 46, 554-556, (2005).
[CrossRef]

S. Oh, L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave Opt. Technol.Lett. 48, 329-334, (2006).
[CrossRef]

Nature (1)

H. T. Chen, W. J. Padilla, J. Zide, A. Gossard, A. Taylor and R. Averitt, "Active terahertz metamaterial devices." Nature 444, 597-600, (2006).
[CrossRef] [PubMed]

Nature Materials (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer and H. Giessen, " Three-dimensional photonic mtamaterials at optical frequencies," Nature Materials 7, 31-37, (2008).
[CrossRef]

Nature Photonics (1)

Q6. H-T. Chen, J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2,295-298, (2008).
[CrossRef]

New J. Phys. (1)

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7, 168 (2005).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

Q5. D. Smith, S. Schultz, P. Markos and C. M. Soukoulis "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104-1, (2002).
[CrossRef]

Phys. Rev. Lett. (1)

A. A. Zharov, I. V. Shadrivov, and Y.S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett. 91, 037401 (2003)
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Dudley, W. Duncan, J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985,14-25 (2003).
[CrossRef]

Prog. Electromag. Res. (1)

Q7. S. Maslovski, P. Ikonen, I. kolmakov and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: metalsolenoid" Prog. Electromag. Res. 54, 61-81, (2005).
[CrossRef]

Science (2)

J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782, (2006).
[CrossRef] [PubMed]

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of negative index of refraction, Science 292, 77-79, (2001).
[CrossRef] [PubMed]

Sov. Phys USPEKHI (1)

Q1. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys USPEKHI 10, 509 (1968).
[CrossRef]

Other (3)

C. Balanis, Antenna Theory, third edition (John Wiley & Sons, 2005), Chap. 6.

P. He, P. Parimi, C. Vittoria, "Tunable negative refractive index metamaterial phase shifter," Electon. Lett. 43, (2007).
[CrossRef]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 153901(4) (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Configuration 1: H-field perpendicular to the DSRR. (b) Configuration 2: k vector perpendicular to the DSRR

Fig. 2.
Fig. 2.

(a) Extracted real and imaginary parts of the effective index for configuration 1. Shaded region indicates the operating region at 4 GHz. (b) Plot of the Electric field line across the computational region for configuration 1. Shaded region of 5 mm indicates the space occupied by the DSRR unit cell.

Fig. 3.
Fig. 3.

(a) Transmission data for configuration 1 at 4 GHz. (b) Transmission data for configuration 2 at 11.04 GHz.

Fig. 4.
Fig. 4.

(a) Extracted real and imaginary parts of the effective index for configuration 2. The shaded region indicates the operating region of 11.04 GHz. (b) Plot of the Electric field line across the computational region for configuration 2. The shaded region indicates the space occupied by the DSRRs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ = R ± R 2 1
R = 0.5 ( S 11 2 S 21 2 + 1 S 11 )
T = ( S 11 + S 21 Γ 1 ( S 11 + S 21 ) Γ )
Δϕ = ( Δ n eff ) kd

Metrics