Abstract

We describe a novel process of laser-assisted fabrication of surface structures on doped oxide glasses with heights reaching 10 – 13% of the glass thickness. This effect manifests itself as a swelling of the irradiated portion of the glass, which occurs in a wide range of glass compositions. The extent of such swelling depends on the glass base composition. Doping with Fe, Ti, Co, Ce, and other transition metals allows for adjusting the absorption of the glass and maximizing the feature size. In the case of bumps grown on borosilicate glasses, we observe reversible glass swelling and the bump height can increase or decrease depending on whether the consecutive laser pulse has higher or lower energy compared with the previous one. The hypothetical mechanism includes laser heating of glass, glass melting, and directional flow. We review several potential applications of such glass swelling.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.D. Bennett, L. Li, "Modeling laser texturing of silicate glass," J. Appl. Phys. 89, 942-950 (2001).
    [CrossRef]
  2. T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," J. Appl. Phys. 86, 1311-1316 (1999).
    [CrossRef]
  3. V.P. Veiko, E.Y. Yakovlev, ‘Physical fundamentals of laser forming of micro-optical components," Opt. Eng. 33, 3567-3571 (1994).
    [CrossRef]
  4. Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
    [CrossRef]
  5. G. Beadie, N.M. Lawandy, "Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses," Opt. Lett.,  20, 2153-2155 (1995).
    [CrossRef] [PubMed]
  6. M. Fritze. M.B. Stern, P.W. Wyatt "Laser-fabricated glass microlens arrays,"Opt. Lett.,  23, 141-143 (1998).
    [CrossRef]
  7. Q2. Y. Hayasaki, D. Kawamura, "High-density bump formation on a glass surface using femtosecond laser processing in water," Appl. Phys. A 87, 691-695 (2007).
    [CrossRef]
  8. R. Kitamura, L. Pilon, M. Jonasz, "Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature," Appl. Opt. 46, 8118-8133 (2007).
    [CrossRef] [PubMed]
  9. MLH. Tardy, "An Experimental Method for Measuring the Birefringence in Optical Materials," Opt. Rev. 8, 59-69 (1929).

2008

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

2007

Q2. Y. Hayasaki, D. Kawamura, "High-density bump formation on a glass surface using femtosecond laser processing in water," Appl. Phys. A 87, 691-695 (2007).
[CrossRef]

R. Kitamura, L. Pilon, M. Jonasz, "Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature," Appl. Opt. 46, 8118-8133 (2007).
[CrossRef] [PubMed]

2001

T.D. Bennett, L. Li, "Modeling laser texturing of silicate glass," J. Appl. Phys. 89, 942-950 (2001).
[CrossRef]

1999

T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," J. Appl. Phys. 86, 1311-1316 (1999).
[CrossRef]

1998

1995

1994

V.P. Veiko, E.Y. Yakovlev, ‘Physical fundamentals of laser forming of micro-optical components," Opt. Eng. 33, 3567-3571 (1994).
[CrossRef]

1929

MLH. Tardy, "An Experimental Method for Measuring the Birefringence in Optical Materials," Opt. Rev. 8, 59-69 (1929).

Beadie, G.

Bennett, T.D.

T.D. Bennett, L. Li, "Modeling laser texturing of silicate glass," J. Appl. Phys. 89, 942-950 (2001).
[CrossRef]

Cahill, D. G.

T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," J. Appl. Phys. 86, 1311-1316 (1999).
[CrossRef]

Chin, H.J.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Fritze, M.

Greif, R.

T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," J. Appl. Phys. 86, 1311-1316 (1999).
[CrossRef]

Grigoropoulos, C. P.

T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," J. Appl. Phys. 86, 1311-1316 (1999).
[CrossRef]

Hayasaki, Y.

Q2. Y. Hayasaki, D. Kawamura, "High-density bump formation on a glass surface using femtosecond laser processing in water," Appl. Phys. A 87, 691-695 (2007).
[CrossRef]

Jonasz, M.

Jung, Y.J.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Kang, H.O.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Kawamura, D.

Q2. Y. Hayasaki, D. Kawamura, "High-density bump formation on a glass surface using femtosecond laser processing in water," Appl. Phys. A 87, 691-695 (2007).
[CrossRef]

Kim, T.H.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Kim, Y.S.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Kitamura, R.

Lawandy, N.M.

Lee, K.H.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Lee, S.H.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Li, L.

T.D. Bennett, L. Li, "Modeling laser texturing of silicate glass," J. Appl. Phys. 89, 942-950 (2001).
[CrossRef]

Pilon, L.

Ryu, B.K.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Shiu, T.-R.

T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," J. Appl. Phys. 86, 1311-1316 (1999).
[CrossRef]

Tardy, MLH.

MLH. Tardy, "An Experimental Method for Measuring the Birefringence in Optical Materials," Opt. Rev. 8, 59-69 (1929).

Veiko, V.P.

V.P. Veiko, E.Y. Yakovlev, ‘Physical fundamentals of laser forming of micro-optical components," Opt. Eng. 33, 3567-3571 (1994).
[CrossRef]

Yakovlev, E.Y.

V.P. Veiko, E.Y. Yakovlev, ‘Physical fundamentals of laser forming of micro-optical components," Opt. Eng. 33, 3567-3571 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. A

Q2. Y. Hayasaki, D. Kawamura, "High-density bump formation on a glass surface using femtosecond laser processing in water," Appl. Phys. A 87, 691-695 (2007).
[CrossRef]

J. Appl. Phys.

T.D. Bennett, L. Li, "Modeling laser texturing of silicate glass," J. Appl. Phys. 89, 942-950 (2001).
[CrossRef]

T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," J. Appl. Phys. 86, 1311-1316 (1999).
[CrossRef]

J. Ceram. Soc. Jap.

Q1. T.H. Kim, K.H. Lee, Y.J. Jung, Y.S. Kim, H.J. Chin, B.K. Ryu, H.O. Kang, S.H. Lee, "Micromachining of glass by using a Nd:YAG (532 nm) laser for the optical device." J. Ceram. Soc. Jap. 116, 309-312 (2008).
[CrossRef]

Opt. Eng.

V.P. Veiko, E.Y. Yakovlev, ‘Physical fundamentals of laser forming of micro-optical components," Opt. Eng. 33, 3567-3571 (1994).
[CrossRef]

Opt. Lett.

Opt. Rev.

MLH. Tardy, "An Experimental Method for Measuring the Birefringence in Optical Materials," Opt. Rev. 8, 59-69 (1929).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

The process (a)-(c) of bump fabrication and (d) the bump side view.

Fig. 2.
Fig. 2.

Dependence of the bump height on the 810-nm laser pulse energy for glass #4.

Fig. 3.
Fig. 3.

Maximum bump height and corresponding laser pulse energy as a function of optical density.

Fig. 4.
Fig. 4.

Bump height on glass #4 using the 810 nm laser (a) vs. number of 4.5-J shots and (b) reduction following an initial 9.7-J shot by two 4.5-J shots.

Fig. 5.
Fig. 5.

Bump height adjustment on glass # 5 with the 1550-nm laser.

Fig. 6.
Fig. 6.

Measurement of glass laser ridge vs. laser power for two different sweep velocities.

Fig. 7.
Fig. 7.

Dynamics of the birefringence in the bulk glass under the bump. The duration of the pulse exposure was 2 s and laser beam was coming from the top. The residual peak stress in the sample after is close to 70 MPa.

Fig. 8.
Fig. 8.

Dynamics of the bump height and corresponding peak temperature. Two different conditions are shown. The open symbols are for 11-s, 11-W exposure and closed red symbols for 6-s, 13-W exposure, Circles are for bump height, squares are for temperature.

Fig. 9.
Fig. 9.

Profile of the formed bump (black line) and fit with an R = 297 μm circle (red line). The bump was made on 3966 glass using the 810-nm laser; its profile is uneven because of the reflective-surfaces profiling technique drawbacks.

Fig. 10.
Fig. 10.

Curvature radius (black squares) and diameter (red squares) of the bumps on 3966 glass as a function of pulse energy (810-nm laser, 1-s exposure).

Fig. 11.
Fig. 11.

Array of the lenses formed by this method - typical diameter of the lens is 400 microns.

Tables (1)

Tables Icon

Table 1. Glass compositions used in experiments.

Metrics