Abstract

Recently, a number of high-speed optical clock generation technologies have been developed due to their potential useful applications in different fields. Here, we propose a new terahertz optical clock generation technique with tunable repetition rate and central wavelength. The proposed optical clock generator consists of an frequency comb light source and a variable-bandwidth spectrum shaper (VBS). The VBS can generate arbitrary repetition rate pulse trains and waveform by controlling each spectral mode. We experimentally demonstrated optical clock generation with repetition rates of 1.28, 2.56, 3.0, and 4.0 THz

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
    [CrossRef] [PubMed]
  2. Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
    [CrossRef]
  3. Y. Ueno, S. Nakamura, and K. Tajima, “Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160 GHz range for use in ultrahigh-speed all-optical signal processing,” J. Opt. Soc. Am. B 19, 2573–2589 (2002).
    [CrossRef]
  4. M. Katsuragawa, K. Yokoyama, and T. Onose, “Generation of a 10.6-THz ultrahigh-repetition rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13, 5628 (2005).
    [CrossRef] [PubMed]
  5. Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
    [CrossRef]
  6. J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
    [CrossRef]
  7. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
    [CrossRef]
  8. M. Nakazawa, T. Yamamoto, and K. R. Tamura: “1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
    [CrossRef]
  9. S. Arahira, S. Oshiba, Y. Matsui, T. Kanii, and Y. Ogawa, “Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode,” Opt. Lett. 19, 834 (1994).
    [CrossRef] [PubMed]
  10. M. Hyodo, K. S. Abedin, and N. Onodera, “Fourier synthesis of 1.8-THz optical-pulse trains by phase locking of three independent semiconductor lasers,” Opt. Lett. 26, 340–342 (2001).
    [CrossRef]
  11. G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
    [CrossRef]
  12. K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jap. J. Appl. Phys. 43, 6448–6451 (2004).
    [CrossRef]
  13. N. Wada and F. Kubota, “160GHz to 20GHz variable rate RZ and CS-RZ pulse trains generation by using phase and attenuation tunable high-resolution AWG, and its application to photonic networks,” in Proceedings Conference on Lasers and Electro-Optics in Europe 2003 (CLEO/Europe 2003), Germany, 2003, CEP-8 (2003).
  14. Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
    [CrossRef]
  15. S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

2008 (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

2007 (2)

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

2006 (3)

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

2005 (3)

M. Katsuragawa, K. Yokoyama, and T. Onose, “Generation of a 10.6-THz ultrahigh-repetition rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13, 5628 (2005).
[CrossRef] [PubMed]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

2004 (1)

K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jap. J. Appl. Phys. 43, 6448–6451 (2004).
[CrossRef]

2003 (1)

N. Wada and F. Kubota, “160GHz to 20GHz variable rate RZ and CS-RZ pulse trains generation by using phase and attenuation tunable high-resolution AWG, and its application to photonic networks,” in Proceedings Conference on Lasers and Electro-Optics in Europe 2003 (CLEO/Europe 2003), Germany, 2003, CEP-8 (2003).

2002 (1)

2001 (1)

2000 (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura: “1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

1994 (1)

Abedin, K. S.

Anzai, S.

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

Arahira, S.

Berrettini, G.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

Bogoni, A.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

Guglielmucci, M.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

Hayashi, Y.

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Higurashi, T.

Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
[CrossRef]

Hiroishi, J.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

Hyodo, M.

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Ishikawa, T.

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Itoh, K.

K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jap. J. Appl. Phys. 43, 6448–6451 (2004).
[CrossRef]

Kanii, T.

Katsuragawa, M.

Kirimura, T.

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Kodate, K.

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

Komai, Y.

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

Kubota, F.

N. Wada and F. Kubota, “160GHz to 20GHz variable rate RZ and CS-RZ pulse trains generation by using phase and attenuation tunable high-resolution AWG, and its application to photonic networks,” in Proceedings Conference on Lasers and Electro-Optics in Europe 2003 (CLEO/Europe 2003), Germany, 2003, CEP-8 (2003).

Kuramoto, E.

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Matsui, Y.

Meloni, G.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

Mieno, M.

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

Millot, G.

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

Miyazaki, T.

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
[CrossRef]

Morita, R.

K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jap. J. Appl. Phys. 43, 6448–6451 (2004).
[CrossRef]

Moritsuka, F.

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

Nakamura, S.

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura: “1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Namiki, S.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

Ogawa, Y.

Oishi, N.

Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
[CrossRef]

Okumura, Y.

Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
[CrossRef]

Onodera, N.

Onose, T.

Oshiba, S.

Ozeki, Y.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

Poti, L.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

Sakano, M.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

Sasaki, Y. C.

Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
[CrossRef]

Scaffardi, M.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

Sugizaki, R.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

Tajima, K.

Takasaka, S.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura: “1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Tanaka, Y.

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Toda, Y.

K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jap. J. Appl. Phys. 43, 6448–6451 (2004).
[CrossRef]

Tsukuda, N.

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Ueno, Y.

Wada, N.

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

N. Wada and F. Kubota, “160GHz to 20GHz variable rate RZ and CS-RZ pulse trains generation by using phase and attenuation tunable high-resolution AWG, and its application to photonic networks,” in Proceedings Conference on Lasers and Electro-Optics in Europe 2003 (CLEO/Europe 2003), Germany, 2003, CEP-8 (2003).

Yagi, T.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura: “1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Yamashita, M.

K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jap. J. Appl. Phys. 43, 6448–6451 (2004).
[CrossRef]

Yoda, T.

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

Yokoyama, K.

Appl. Phys. Lett. (1)

Y. C. Sasaki, Y. Okumura, T. Miyazaki, T. Higurashi, and N. Oishi, “Observations of x-ray radiation pressure force on individual gold nanocrystals,” Appl. Phys. Lett. 89, 053121 (2006).
[CrossRef]

Electron. Lett. (2)

M. Nakazawa, T. Yamamoto, and K. R. Tamura: “1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41, 1294–1295 (2005).
[CrossRef]

IEE Electron. Lett. (1)

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” IEE Electron. Lett. 41, 1048–1050 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jap. J. Appl. Phys. (1)

K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jap. J. Appl. Phys. 43, 6448–6451 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Komai, S. Anzai, N. Wada, F. Moritsuka, T. Miyazaki, and K. Kodate, “Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating,” Jpn. J. Appl. Phys. 46, 5508–5511 (2007).
[CrossRef]

Laser Photon. Rev. (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, and T. Ishikawa, “Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry,” Phys. Rev. Lett. 96, 115505 (2006).
[CrossRef] [PubMed]

Other (2)

S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Repetition Rate and Central wavelength Tunable Terahertz Optical Clock Generation Using Variable Bandwidth Spectrum Shaper,” Optoelectronics and Communications Conference and International Conference on Integrated Optics and Optical Fiber Communication 2007 (OECC/IOOC 2007), Japan, 2007, 11D2-2.

N. Wada and F. Kubota, “160GHz to 20GHz variable rate RZ and CS-RZ pulse trains generation by using phase and attenuation tunable high-resolution AWG, and its application to photonic networks,” in Proceedings Conference on Lasers and Electro-Optics in Europe 2003 (CLEO/Europe 2003), Germany, 2003, CEP-8 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of pulse processing in the spectral domain.

Fig. 2.
Fig. 2.

Configuration of VBS and principle of pulse processing in the spectral domain.

Fig. 3.
Fig. 3.

Experimental set-up for THz-repetition-rate optical clock generation.

Fig. 4.
Fig. 4.

FC light generation. (a) Spectrum of 10 GHz repetition-rate optical pulses. (b) Spectrum of generated FC light. (c) Close-up of FC light spectrum.

Fig. 5.
Fig. 5.

Simulated and experimental results for 1.28 THz repetition-rate optical clock. (a), (b) Spectra and utocorrelation for simulated results. (c), (d) Spectra and autocorrelation for experimental results. (e), (f) Spectra and autocorrelation for experimental results (at central wavelength of 1549.7 nm).

Fig. 6.
Fig. 6.

Spectra and autocorrelations for generated optical clocks. (a) Spectrum and (b) autocorrelation for 2.56 THz repetition rate. (c) Spectrum and (d) autocorrelation for 3.0 THz repetition rate. (e) Spectrum and (f) autocorrelation for 4.0 THz repetition rate.

Metrics