Abstract

We demonstrate a single-shot technique for optical sampling based on temporal magnification using a silicon-chip time lens. We demonstrate the largest reported temporal magnification factor yet achieved (>500) and apply this technique to perform 1.3 TS/s single-shot sampling of ultrafast waveforms and to 80-Gb/s performance monitoring. This scheme offers the potential of developing a device that can transform GHz oscilloscopes into instruments capable of measuring signals with THz bandwidths.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair, L. Lagae, W. J. M. deJonge, and B. Koopmans, "All-optical probe of coherent spin waves," Phys. Rev. Lett.  88, 227201-1-4 (2002).
    [CrossRef] [PubMed]
  2. R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987).
    [CrossRef] [PubMed]
  3. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
    [CrossRef]
  4. C. Dorrer, "High-speed measurements for optical telecommunication systems," IEEE J. Sel. Top. Quantum Electron. 12, 843-858 (2006).
    [CrossRef]
  5. N. Yamada, H. Ohta, and S. Nogiwa, "Polarization-insensitive optical sampling system using two KTP crystals," IEEE Photon. Technol. Lett. 16, 215-217 (2004).
    [CrossRef]
  6. M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005).
    [CrossRef]
  7. J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
    [CrossRef]
  8. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, "Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology," J. Lightwave Technol. 23, 178-186 (2005).
    [CrossRef]
  9. J.-H. Chung and A. M. Weiner, "Real-time detection of femtosecond optical pulse sequences via time-to-space conversion in the lightwave communications band," J. Lightwave Technol. 21, 3323-3333 (2003).
    [CrossRef]
  10. Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
    [CrossRef]
  11. P. C. Sun, Y. T. Mazurenko, and Y. Fainman, "Femtosecond pulse imaging: ultrafast optical oscilloscope," J. Opt. Soc. Am. A 14, 1159-1170 (1997).
    [CrossRef]
  12. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
    [CrossRef] [PubMed]
  13. C. Dorrer, J. Bromage, and J. D. Zuegel, "High-dymanic-range single-shot cross-correlator based on an optical pulse replicator," Opt. Express 16, 13534-13544 (2008).
    [CrossRef] [PubMed]
  14. K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998).
    [CrossRef]
  15. J. Chou, O. Boyraz, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
    [CrossRef]
  16. C. Dorrer, "Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning," Opt. Lett. 31, 540-542 (2006).
    [CrossRef] [PubMed]
  17. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, "Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation," Sov. Phys. Usp. 29, 642-677 (1986).
    [CrossRef]
  18. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
    [CrossRef]
  19. M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
    [CrossRef]
  20. J. van Howe and C. Xu, "Ultrafast optical signal processing based upon space-time dualities," J. Lightwave Technol. 24, 2649-2662 (2006).
    [CrossRef]
  21. C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging - Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).
    [CrossRef]
  22. C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994).
    [CrossRef]
  23. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, "640 GHz real-time recording using temporal imaging," Conference on Lasers and Electro-Optics, OSA Technical Digest CD, paper CtuA6 (2008).
  24. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett. 33, 1047-1049 (2008).
    [CrossRef] [PubMed]
  25. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
    [CrossRef] [PubMed]
  26. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, and M. Paniccia, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006).
    [CrossRef] [PubMed]
  27. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
    [CrossRef] [PubMed]
  28. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
    [CrossRef] [PubMed]
  29. A. C. Turner, M. A. Foster, B. S. Schmidt, A. L. Gaeta, and M. Lipson, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
    [CrossRef] [PubMed]
  30. J. Azana and M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).
    [CrossRef]
  31. Y. Han and B. Jalali, "Time-bandwidth product of the photonic time stretch analog-to-digital converter," IEEE Trans. Microwave Theory Tech. 51, 1886-1892 (2003).
    [CrossRef]

2008 (3)

2007 (3)

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
[CrossRef]

J. Chou, O. Boyraz, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

2006 (6)

2005 (4)

C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, "Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology," J. Lightwave Technol. 23, 178-186 (2005).
[CrossRef]

R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
[CrossRef] [PubMed]

M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005).
[CrossRef]

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

2004 (2)

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

N. Yamada, H. Ohta, and S. Nogiwa, "Polarization-insensitive optical sampling system using two KTP crystals," IEEE Photon. Technol. Lett. 16, 215-217 (2004).
[CrossRef]

2003 (2)

Y. Han and B. Jalali, "Time-bandwidth product of the photonic time stretch analog-to-digital converter," IEEE Trans. Microwave Theory Tech. 51, 1886-1892 (2003).
[CrossRef]

J.-H. Chung and A. M. Weiner, "Real-time detection of femtosecond optical pulse sequences via time-to-space conversion in the lightwave communications band," J. Lightwave Technol. 21, 3323-3333 (2003).
[CrossRef]

2000 (2)

J. Azana and M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging - Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).
[CrossRef]

1998 (1)

K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998).
[CrossRef]

1997 (1)

1994 (3)

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994).
[CrossRef]

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
[CrossRef]

1987 (1)

R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987).
[CrossRef] [PubMed]

1986 (1)

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, "Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation," Sov. Phys. Usp. 29, 642-677 (1986).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, "Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation," Sov. Phys. Usp. 29, 642-677 (1986).
[CrossRef]

Andrekson, P. A.

M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005).
[CrossRef]

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

Azana, J.

J. Azana and M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).
[CrossRef]

Banyal, W. C.

M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
[CrossRef]

Bennett, C. V.

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging - Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).
[CrossRef]

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994).
[CrossRef]

Bloom, D. M.

M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
[CrossRef]

Boyraz, O.

J. Chou, O. Boyraz, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Bromage, J.

Chirkin, A. S.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, "Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation," Sov. Phys. Usp. 29, 642-677 (1986).
[CrossRef]

Chou, J.

J. Chou, O. Boyraz, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Chung, J.-H.

Dadap, J. I.

Deng, K.-L.

K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998).
[CrossRef]

Doerr, C. R.

Dorrer, C.

Espinola, R. L.

Fainman, Y.

Foster, M. A.

Fujimoto, J. G.

R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987).
[CrossRef] [PubMed]

Gaeta, A. L.

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett. 33, 1047-1049 (2008).
[CrossRef] [PubMed]

Glesk, I.

K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998).
[CrossRef]

Godil, A. A.

M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
[CrossRef]

Han, Y.

Y. Han and B. Jalali, "Time-bandwidth product of the photonic time stretch analog-to-digital converter," IEEE Trans. Microwave Theory Tech. 51, 1886-1892 (2003).
[CrossRef]

Hansryd, J.

M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005).
[CrossRef]

Ishikawa, K.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Jalali, B.

J. Chou, O. Boyraz, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Y. Han and B. Jalali, "Time-bandwidth product of the photonic time stretch analog-to-digital converter," IEEE Trans. Microwave Theory Tech. 51, 1886-1892 (2003).
[CrossRef]

Kang, I.

Karlsson, M.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

Kauffman, M. T.

M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
[CrossRef]

Kolner, B. H.

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging - Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).
[CrossRef]

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994).
[CrossRef]

Kuo, Y.-H.

Leuthold, J.

Li, J.

M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005).
[CrossRef]

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987).
[CrossRef] [PubMed]

Lipson, M.

Mazurenko, Y. T.

McNab, S. J.

Muriel, M. A.

J. Azana and M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).
[CrossRef]

Nogiwa, S.

N. Yamada, H. Ohta, and S. Nogiwa, "Polarization-insensitive optical sampling system using two KTP crystals," IEEE Photon. Technol. Lett. 16, 215-217 (2004).
[CrossRef]

Ohta, H.

N. Yamada, H. Ohta, and S. Nogiwa, "Polarization-insensitive optical sampling system using two KTP crystals," IEEE Photon. Technol. Lett. 16, 215-217 (2004).
[CrossRef]

Olsson, B.-E.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

Osgood, R. M.

Paniccia, M.

Prucnal, P. R.

K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998).
[CrossRef]

Rong, H.

Runser, R. J.

K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998).
[CrossRef]

Ryf, R.

Sakabe, S.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Salem, R.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, B. S. Schmidt, A. L. Gaeta, and M. Lipson, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987).
[CrossRef] [PubMed]

Scott, R. P.

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Shimizu, S.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Sih, V.

Sun, P. C.

Sunnerud, H.

M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005).
[CrossRef]

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

Takagi, Y.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Tonouchi, M.

M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
[CrossRef]

Turner, A. C.

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

van Howe, J.

Vlasov, Y. A.

Vysloukh, V. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, "Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation," Sov. Phys. Usp. 29, 642-677 (1986).
[CrossRef]

Weiner, A. M.

Westlund, M.

M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005).
[CrossRef]

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

Winzer, P. J.

Xu, C.

Xu, S.

Yamada, N.

N. Yamada, H. Ohta, and S. Nogiwa, "Polarization-insensitive optical sampling system using two KTP crystals," IEEE Photon. Technol. Lett. 16, 215-217 (2004).
[CrossRef]

Yamada, Y.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Zuegel, J. D.

Appl. Phys. Lett. (3)

M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994).
[CrossRef]

C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994).
[CrossRef]

J. Chou, O. Boyraz, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging - Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).
[CrossRef]

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

J. Azana and M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Dorrer, "High-speed measurements for optical telecommunication systems," IEEE J. Sel. Top. Quantum Electron. 12, 843-858 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

N. Yamada, H. Ohta, and S. Nogiwa, "Polarization-insensitive optical sampling system using two KTP crystals," IEEE Photon. Technol. Lett. 16, 215-217 (2004).
[CrossRef]

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004).
[CrossRef]

K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

Y. Han and B. Jalali, "Time-bandwidth product of the photonic time stretch analog-to-digital converter," IEEE Trans. Microwave Theory Tech. 51, 1886-1892 (2003).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Nature (2)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Nature Photonics (1)

M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, "Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation," Sov. Phys. Usp. 29, 642-677 (1986).
[CrossRef]

Other (2)

M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair, L. Lagae, W. J. M. deJonge, and B. Koopmans, "All-optical probe of coherent spin waves," Phys. Rev. Lett.  88, 227201-1-4 (2002).
[CrossRef] [PubMed]

C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, "640 GHz real-time recording using temporal imaging," Conference on Lasers and Electro-Optics, OSA Technical Digest CD, paper CtuA6 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram showing the concept of temporal magnification using the FWM time lens. A chirped pump pulse is mixed with the input signal, which transfers a quadratic phase to the signal. (b) Experimental setup used to demonstrate the temporal magnification concept using a silicon nanowaveguide.

Fig. 2.
Fig. 2.

(a) Cross-correlation of the first signal under test. (b) Optical spectrum measured at the output of the silicon waveguide showing an efficient wavelength conversion. The converted signal spectrum represents the input waveform in the time domain (time-to-frequency conversion). (c) Stretched signal shown for different magnification factors. (d) An arbitrary optical waveform shown before and after the temporal stretching by a factor of 520.

Fig. 3.
Fig. 3.

(a) Schematic showing the application of the time stretching scheme for characterizing randomly varying signals. (b) Single-shot measurement of an 80-Gb/s RZ signal and the corresponding eye diagram.

Fig. 4.
Fig. 4.

Eye diagram comparison for three different pulse width settings of the transmitter showing a degraded eye diagram for longer pulse widths

Metrics