Abstract

We propose and demonstrate simultaneous optoelectronic NRZ-to-RZ format conversion for multiple DWDM channels with some regenerative properties, using a single phase modulator (PM) and a fibre delay-interferometer (DI). In order to accommodate multiple DWDM channels, the DI is designed to have a free spectral range (FSR) equal to the channel spacing. This thus extracts the chirp induced by the phase modulation for all the channels at the same time. Since the original carriers are suppressed to some extent, the NRZ-to-RZ conversions can be achieved with partial regeneration. Multi-channel format conversion is successfully demonstrated for 16 channels at 10 Gb/s and 8 channels at 20 Gb/s, with a channel spacing of 100GHz. Bit error ratio (BER) measurements at 10Gb/s show 3.5 and 4.2 dB penalty improvements for 50 and 75km transmission without dispersion compensation, respectively. Significant extinction ratio (ER) improvement and timing jitter reduction is observed for the converted channels.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.  Xu, B. C.  Wang, V.  Baby, and I.  Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett.  15, 308-310 (2003).
    [CrossRef]
  2. G. Lin, K. Yu, and Y. Chang, "10 Gbit/s all-optical non-return to zero-return-to-zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-10-1376.
    [CrossRef] [PubMed]
  3. Y Yu, X. Zhang, D. Huang, W. Fu, and L Li, "20Gb/s all-optical format conversion from RZ signals with different duty-cycles to NRZ signals," IEEE Photon. Technol. Lett. 19, 1027-1029 (2007).
    [CrossRef]
  4. C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12, 451-458 (2006).
    [CrossRef]
  5. H. Chou and J. Bowers, "Simplified optoelectronic 3R regenerator using nonlinear electro-optical transformation in an electroabsorption modulator," Opt. Express 13, 2742-2746 (2005) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2742.
    [CrossRef] [PubMed]
  6. L. Huo, Y. Dong C. Y. Lou, and Y. Z. Gao, "Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation," IEEE Photon. Technol. Lett.  15, 981-983 (2003).
    [CrossRef]
  7. C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40, 620-621 (2004).
    [CrossRef]
  8. L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
    [CrossRef]
  9. J. Lasri, P. Devgan, V. Grigoryan, and P. Kumar, "Multiwavelength NRZ-to-RZ conversion with timing-jitter suppression," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CFG2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CFG2.
    [PubMed]
  10. Y. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, "Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD," Opt. Express 14, 10339-10344 (2006) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10339.
    [CrossRef] [PubMed]
  11. Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Penty, and I. H. White, "Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles," Opt. Express 16, 16166-16171 (2008). >http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-20-16166.
    [CrossRef] [PubMed]

2008

2007

Y Yu, X. Zhang, D. Huang, W. Fu, and L Li, "20Gb/s all-optical format conversion from RZ signals with different duty-cycles to NRZ signals," IEEE Photon. Technol. Lett. 19, 1027-1029 (2007).
[CrossRef]

2006

2005

2004

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40, 620-621 (2004).
[CrossRef]

2003

L.  Xu, B. C.  Wang, V.  Baby, and I.  Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett.  15, 308-310 (2003).
[CrossRef]

L. Huo, Y. Dong C. Y. Lou, and Y. Z. Gao, "Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation," IEEE Photon. Technol. Lett.  15, 981-983 (2003).
[CrossRef]

1995

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Baby, V.

L.  Xu, B. C.  Wang, V.  Baby, and I.  Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett.  15, 308-310 (2003).
[CrossRef]

Bowers, J.

Chang, Y.

Chou, H.

Ellis, A. D.

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Fu, W.

Y Yu, X. Zhang, D. Huang, W. Fu, and L Li, "20Gb/s all-optical format conversion from RZ signals with different duty-cycles to NRZ signals," IEEE Photon. Technol. Lett. 19, 1027-1029 (2007).
[CrossRef]

Glesk, I.

Y. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, "Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD," Opt. Express 14, 10339-10344 (2006) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10339.
[CrossRef] [PubMed]

L.  Xu, B. C.  Wang, V.  Baby, and I.  Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett.  15, 308-310 (2003).
[CrossRef]

Huang, D.

Huang, Y.

Huo, L.

L. Huo, Y. Dong C. Y. Lou, and Y. Z. Gao, "Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation," IEEE Photon. Technol. Lett.  15, 981-983 (2003).
[CrossRef]

Kim, C.

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40, 620-621 (2004).
[CrossRef]

Kwok, C. H.

C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12, 451-458 (2006).
[CrossRef]

Li, G.

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40, 620-621 (2004).
[CrossRef]

Li, L

Y Yu, X. Zhang, D. Huang, W. Fu, and L Li, "20Gb/s all-optical format conversion from RZ signals with different duty-cycles to NRZ signals," IEEE Photon. Technol. Lett. 19, 1027-1029 (2007).
[CrossRef]

Lin, C.

C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12, 451-458 (2006).
[CrossRef]

Lin, G.

Noel, L.

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Penty, R. V.

Prucnal, P. R.

Rosas-Fernández, J. B.

Shan, X.

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Shankar, R.

Wang, B. C.

L.  Xu, B. C.  Wang, V.  Baby, and I.  Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett.  15, 308-310 (2003).
[CrossRef]

White, I. H.

Xu, L.

L.  Xu, B. C.  Wang, V.  Baby, and I.  Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett.  15, 308-310 (2003).
[CrossRef]

Yu, K.

Yu, Y

Y Yu, X. Zhang, D. Huang, W. Fu, and L Li, "20Gb/s all-optical format conversion from RZ signals with different duty-cycles to NRZ signals," IEEE Photon. Technol. Lett. 19, 1027-1029 (2007).
[CrossRef]

Yu, Y.

Zhang, X.

Electron. Lett.

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40, 620-621 (2004).
[CrossRef]

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12, 451-458 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

L.  Xu, B. C.  Wang, V.  Baby, and I.  Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett.  15, 308-310 (2003).
[CrossRef]

Y Yu, X. Zhang, D. Huang, W. Fu, and L Li, "20Gb/s all-optical format conversion from RZ signals with different duty-cycles to NRZ signals," IEEE Photon. Technol. Lett. 19, 1027-1029 (2007).
[CrossRef]

L. Huo, Y. Dong C. Y. Lou, and Y. Z. Gao, "Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation," IEEE Photon. Technol. Lett.  15, 981-983 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Lasri, P. Devgan, V. Grigoryan, and P. Kumar, "Multiwavelength NRZ-to-RZ conversion with timing-jitter suppression," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CFG2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CFG2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup

Fig. 2.
Fig. 2.

Spectra of the 16*10Gb/s signals (a) before the regenerator (b) after the PM (c) after the DI (d) one of the regenerated signals

Fig. 3.
Fig. 3.

Spectra of the 8*20Gb/s signals (a) before the regenerator (b) after the PM (c) after the DI (d) one of the regenerated signals

Fig. 4.
Fig. 4.

Eye diagram of (a) original NRZ signal at 10Gb/s, (b) the converted RZ signal at 10Gb/s, (c) the original NRZ signal at 20Gb/s and (d) the converted RZ signal at 20Gb/s.

Fig. 5.
Fig. 5.

Eye diagrams for one channel at (a) 50km transmission (b) 75km transmission (c) regenerated signal after 50km (d) regenerated signal after 75km Time scale: 50ps/div

Fig. 6.
Fig. 6.

BER measurements for channel 5

Fig. 7.
Fig. 7.

Measured timing jitter and ER improvement

Metrics