Abstract

We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding induces a fluorescence that marks the subsurface damages and eases its observation. Such residual traces might also be involved in the laser damage process.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. André, “Status of the LMJ project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).
  2. W. H. Lowdermilk, “Status of the National Ignition Facility project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 16–37 (1996).
  3. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers,” Appl. Opt. 41, 3628–3633 (2002).
    [PubMed]
  4. H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).
  5. D. W. Camp et al., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” in Proceedings of Laser-induced Damage Threshold in Optical Materials, Proc. SPIE 3244, 356–364 (1998).
  6. S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
  7. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).
  8. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
    [PubMed]
  9. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” in J. Opt. Soc. Am. A 18 10, 2607–2616 (2001).
  10. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 264–272 (2004).
  11. A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).
  12. J. Neauport, P. Cormont, C. Ambard, and F. Pilon, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Optics Comm. 2813802–3805 (2008).
  13. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007).
  14. W. J. Rupp, “Mechanism of the diamond lapping process,” Appl. Opt. 13, 6, 1264–1269.
  15. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt. 26, 4677–4680 (1987).
    [PubMed]
  16. J. C. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damge in some single crystalline optical materials,” Appl. Opt. 44 12, 2241–2249 (2005).
    [PubMed]
  17. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).
  18. Z. Wang, Y. Wu, Y. Dai, and S. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47 10, 1417–1426 (2008).
    [PubMed]
  19. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
  20. O. Fahnle, T. Wons, T. Koch, E. Debruyne, S Meeder, M. Booij, and S. M. Braat, “iTIRM as a tool for qualifying polishing processes,” Appl. Opt. 41, 4036–4038 (2002)
    [PubMed]
  21. A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings of the EUROPTO conference on topical fabrication and testing, Proc. SPIE 3739, 369–376 (1999).
  22. L. Nevot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8, 304–314 (1975).
  23. LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/tcs-sp2_key.
  24. J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).
  25. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components”, Opt. Express 10, 1444–1450 (2005).
  26. Mark R. Kozlowski and Stavros G. Demos “Properties of modified silica detected within laser-induced damage sites,” in Proceeding of Inorganic Optical Materials II 2000, Alexander J. Marker III and Eugene G. Arthurs, Eds, Proc. SPIE 4102106–111 (2000).
  27. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” App. Phys. Let. Vol  82, 3230–3232 (2003).
  28. P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

2008 (2)

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Optics Comm. 2813802–3805 (2008).

Z. Wang, Y. Wu, Y. Dai, and S. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47 10, 1417–1426 (2008).
[PubMed]

2007 (1)

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007).

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

2005 (5)

J. C. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damge in some single crystalline optical materials,” Appl. Opt. 44 12, 2241–2249 (2005).
[PubMed]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[PubMed]

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components”, Opt. Express 10, 1444–1450 (2005).

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

2004 (2)

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 264–272 (2004).

2003 (1)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” App. Phys. Let. Vol  82, 3230–3232 (2003).

2002 (4)

O. Fahnle, T. Wons, T. Koch, E. Debruyne, S Meeder, M. Booij, and S. M. Braat, “iTIRM as a tool for qualifying polishing processes,” Appl. Opt. 41, 4036–4038 (2002)
[PubMed]

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers,” Appl. Opt. 41, 3628–3633 (2002).
[PubMed]

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

2001 (1)

2000 (1)

Mark R. Kozlowski and Stavros G. Demos “Properties of modified silica detected within laser-induced damage sites,” in Proceeding of Inorganic Optical Materials II 2000, Alexander J. Marker III and Eugene G. Arthurs, Eds, Proc. SPIE 4102106–111 (2000).

1999 (1)

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings of the EUROPTO conference on topical fabrication and testing, Proc. SPIE 3739, 369–376 (1999).

1998 (2)

D. W. Camp et al., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” in Proceedings of Laser-induced Damage Threshold in Optical Materials, Proc. SPIE 3244, 356–364 (1998).

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).

1996 (2)

M. L. André, “Status of the LMJ project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).

W. H. Lowdermilk, “Status of the National Ignition Facility project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 16–37 (1996).

1994 (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).

1987 (1)

1975 (1)

L. Nevot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8, 304–314 (1975).

1269 (1)

W. J. Rupp, “Mechanism of the diamond lapping process,” Appl. Opt. 13, 6, 1264–1269.

Ambard, C.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Optics Comm. 2813802–3805 (2008).

André, M. L.

M. L. André, “Status of the LMJ project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).

Barritault, P.

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

Bercegol, H.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007).

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[PubMed]

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Birolleau, J-C

Bonneau, F.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Booij, M.

Bouchut, P.

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).

Braat, S. M.

Broyer, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Camp, D. W.

D. W. Camp et al., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” in Proceedings of Laser-induced Damage Threshold in Optical Materials, Proc. SPIE 3244, 356–364 (1998).

Chase, L. L.

Chaton, P.

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

Combis, P.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Cormont, P.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Optics Comm. 2813802–3805 (2008).

Cottancin, E.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Croce, P.

L. Nevot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8, 304–314 (1975).

Dai, Y.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

Davis, P. J.

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

Debruyne, E.

Demos, S. G.

Demos, Stavros G.

Mark R. Kozlowski and Stavros G. Demos “Properties of modified silica detected within laser-induced damage sites,” in Proceeding of Inorganic Optical Materials II 2000, Alexander J. Marker III and Eugene G. Arthurs, Eds, Proc. SPIE 4102106–111 (2000).

Donohue, J. T.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Duparre, A.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings of the EUROPTO conference on topical fabrication and testing, Proc. SPIE 3739, 369–376 (1999).

Edwards, D. F.

Fahnle, O.

Feit, M. D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 264–272 (2004).

Fujimoto, J.

Funkenbusch, P. D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).

Gallais, L.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Genin, F. Y.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” in J. Opt. Soc. Am. A 18 10, 2607–2616 (2001).

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).

Golini, D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).

Grua, P.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007).

Hébert, D.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007).

Hed, P.

Jacobs, S. D.

Koch, T.

Kozlowski, M. R.

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers,” Appl. Opt. 41, 3628–3633 (2002).
[PubMed]

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).

Kozlowski, Mark R.

Mark R. Kozlowski and Stavros G. Demos “Properties of modified silica detected within laser-induced damage sites,” in Proceeding of Inorganic Optical Materials II 2000, Alexander J. Marker III and Eugene G. Arthurs, Eds, Proc. SPIE 4102106–111 (2000).

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” App. Phys. Let. Vol  82, 3230–3232 (2003).

Lamaignere, L.

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[PubMed]

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Lambropoulos, J. C.

Le Garrec, B.

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).

Li, S.

Lindquist, A.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).

Loiseau, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Lowdermilk, W. H.

W. H. Lowdermilk, “Status of the National Ignition Facility project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 16–37 (1996).

Meeder, S

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

Menapace, J. A.

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

Miller, P. E.

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

Minoshima, K.

Morreeuw, J. P.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007).

Natoli, J. Y.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Neauport, J.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Optics Comm. 2813802–3805 (2008).

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[PubMed]

Nevot, L.

L. Nevot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8, 304–314 (1975).

Papernov, S.

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).

Pellarin, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Pellin, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Perra, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Pilon, F.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Optics Comm. 2813802–3805 (2008).

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[PubMed]

Pistor, T. V.

Quesnel, D. J.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).

Randi, J. C.

Ravel, G.

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

Raze, G.

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 264–272 (2004).

Rullier, J. L.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Rupp, W. J.

W. J. Rupp, “Mechanism of the diamond lapping process,” Appl. Opt. 13, 6, 1264–1269.

Salleo, A.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” in J. Opt. Soc. Am. A 18 10, 2607–2616 (2001).

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).

Savina, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Schmid, A. W.

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).

Staggs, M.

Steel, W. A.

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

Steinert, J.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings of the EUROPTO conference on topical fabrication and testing, Proc. SPIE 3739, 369–376 (1999).

Stolz, C. J.

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).

Suratwala, T.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

Suratwala, T. I.

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

Truckenbrodt, H.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings of the EUROPTO conference on topical fabrication and testing, Proc. SPIE 3739, 369–376 (1999).

Tuaillon, J.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Vierne, J.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

Wang, Z.

Ward, H.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

Wong, L. L.

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

Wons, T.

Wu, Y.

Wuttig, A.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings of the EUROPTO conference on topical fabrication and testing, Proc. SPIE 3739, 369–376 (1999).

Yoshiyama, J. M.

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).

Zhou, Y.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).

App. Phys. Let. (1)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” App. Phys. Let. Vol  82, 3230–3232 (2003).

Appl. Opt. (6)

J. Am. Ceram. Soc. (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).

J. Appl. Cryst. (1)

L. Nevot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8, 304–314 (1975).

J. Appl. Phys. (1)

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).

J. Appl. Phys. B (1)

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. B 75, 803–815 (2002).

J. Non Cryst. Sol. (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non Cryst. Sol. 352, 5601–5617 (2006).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Optics Comm. (1)

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Optics Comm. 2813802–3805 (2008).

Proc. SPIE (10)

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007).

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, “The impact of laser damage on the lifetime of optical components in fusion lasers,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 312–324 (2004).

D. W. Camp et al., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” in Proceedings of Laser-induced Damage Threshold in Optical Materials, Proc. SPIE 3244, 356–364 (1998).

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” in Proceedings of Laser-induced Damage Threshold in Optical Materials : 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, Eds, Proc. SPIE 5273, 264–272 (2004).

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Proceedings of Laser-Induced Damage in Optical Materials: 1997, Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau, Eds, Proc. SPIE 3244, 341–347 (1998).

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings of the EUROPTO conference on topical fabrication and testing, Proc. SPIE 3739, 369–376 (1999).

M. L. André, “Status of the LMJ project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).

W. H. Lowdermilk, “Status of the National Ignition Facility project,” in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 16–37 (1996).

Mark R. Kozlowski and Stavros G. Demos “Properties of modified silica detected within laser-induced damage sites,” in Proceeding of Inorganic Optical Materials II 2000, Alexander J. Marker III and Eugene G. Arthurs, Eds, Proc. SPIE 4102106–111 (2000).

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, “Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2005, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, and Stolz Christopher J. , Eds, Proc. SPIE 5991, 201–213 (2005).

Proceedings of SPIE (1)

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damages in fused silica,” Laser-Induced Damage Opt. Materials: 2004, edited by G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz Eds, Proceedings of SPIE Vol.  5647, 188–196 (2005).

Other (1)

LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/tcs-sp2_key.

Supplementary Material (1)

» Media 1: AVI (2861 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Sample preparation method of sample D1

Fig. 3.
Fig. 3.

Confocal microscopy principle: epifluorescence mode (left) and reflection mode (right)

Fig. 4.
Fig. 4.

Sample D2 - Confocal microscopy image of the surface in the MRF dimple on an area of 1.5×1.5 mm2, approximately 50 μm removed by MRF between border of the dimple and top of the figure. Same area measured in reflection at 458 nm (a), fluorescence in the 435–661nm spectral band for an excitation wavelength of 405 nm (b) and superposition of the two images (c) - 63 ×x objective

Fig. 5.
Fig. 5.

Sample D2, area of 1.5 × 1.5 mm2 - Standard microscopy image (in light grey) after light HF etching to reveal cracks superposed to Fig. 4(c) i.e. image in fluorescence mode before etching (red) and reflection mode (green) - 63 × objective

Fig. 6.
Fig. 6.

Sample D1 - Confocal microscopy in fluorescence mode in the 435 nm - 661 nm band (405 nm excitation). Diamond grinded surface is at the bottom, measurement carried out from the back side i.e. top of the figure. (Media 1). 63 × objective

Fig. 7.
Fig. 7.

Sample D1 - Fluorescence spectrum for different excitation wavelengths measured on SSD. Spectrums are normalized to 1 to be compared.

Fig. 8.
Fig. 8.

Sample D3 - Confocal microscopy image of the surface in the MRF dimple on an area of 90×90 μm2. Superposition of image in reflection mode at 458 nm (in green), and image in fluorescence mode in the 435–661nm spectral band for an excitation wavelength of 405 nm(in red)

Fig. 9.
Fig. 9.

Sample D3 - Confocal microscopy image in fluorescence mode (405 nm excitation wavelength) in the MRF dimple on an area of 20×20 μm2. Surface rendering is done to show structure of the SSD. Dimple surface is on the back of the image.

Fig. 10.
Fig. 10.

Sample D4 - Confocal microscopy image of the surface in the MRF dimple on an area of 373 × 373 μm2. Superposition of image in reflection mode at 458 nm (in green), and image in fluorescence mode in the 435-661nm spectral band for an excitation wavelength of 405 nm (in red) - 40× objective.

Fig. 11.
Fig. 11.

Fluorescence spectrum for an excitation wavelength of 405 nm of the oil based coolant and the SSD of sample D1.

Tables (2)

Tables Icon

Table 1. Sample preparation methods

Tables Icon

Table 2: Sample preparation to ease confocal microscopy observation

Metrics