Abstract

A new optical fiber current sensor using a CdSe quantum dots doped optical fiber has been demonstrated with high Faraday rotation for remote sensing of current from 0 to 40 Amperes. It showed enhancement in the current sensitivity by about 2 times than that of the single mode optical fiber current sensor at 632 nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
    [CrossRef]
  2. M. W. Shafer and J. C. Suits, "Preparation and Faraday rotation of divalent europium glasses," J. Am. Ceram. Soc. 49, 261-264 (1966).
    [CrossRef]
  3. J. T. Kohli and J. E. Shelby, "Magneto-optical properties of rare earth aluminosilicate glasses," Phys. Chem. Glass. 32, 109-114 (1991).
  4. J. F. Owen, P. B. Dorain, and T. Kobayasi, "Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K," J. Appl. Phys. 52, 1216-1223 (1981).
    [CrossRef]
  5. T. Sato and I. Sone, "Development of bulk-optic current sensor using glass ring type Faraday cells," Opt. Rev. 4, 35-37 (1997).
    [CrossRef]
  6. G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, "Sensitivity improvement of an optical current sensor with enhanced Faraday rotation," J. Lightwave Technol. 15, 2246-2252 (1997).
    [CrossRef]
  7. T. D. Maffetone and T. M. McClelland, "345 kV substation optical current measurement system for revenue metering and protective relaying," IEEE Tran. Power Deliv. 6, 1430-1437 (1991).
    [CrossRef]
  8. C. D. Perciante and J. A. Ferrari, "Faraday current sensor with temperature monitoring," 44, 6910-6912 (2005).
  9. J. C. Yong, S. H. Yun, M. L. Lee, and B. Y. Kim, "Frequency-division-multiplexed polarimetric fiber laser current-sensor array," Opt. Lett. 24, 1097-1099 (1999).
    [CrossRef]
  10. D. H. Kim, H. Y. Yang, B. H. Kim, U. C. Paek, and W. -T. Han, OECC/COIN, Yokohama Japan, p.512 (2004).
  11. J. Qiu and K. Hirao, "The faraday effect in diamagnetic glass," J. Mater. Res. 13, 1358-1362 (1998).
    [CrossRef]
  12. J. H. Kratzer and J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).
    [CrossRef]
  13. A. H. Rose, S. M. Etzel, and K. B. Rochford, "Optical fiber current sensors in high electric field environments," J. Lightwave Technol. 17, 1042-1048 (1991).
    [CrossRef]
  14. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, "Birefringence and polarization mode-dispersion in spun single mode fibers," Appl. Opt. 20, 2962-2968 (1981).
    [CrossRef] [PubMed]
  15. M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, "Faraday rotation in a single-mode fiber with controlled birefringence," Appl. Phys. B 35, 145-148 (1984).
    [CrossRef]

2004 (1)

J. H. Kratzer and J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).
[CrossRef]

1999 (1)

1998 (2)

J. Qiu and K. Hirao, "The faraday effect in diamagnetic glass," J. Mater. Res. 13, 1358-1362 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
[CrossRef]

1997 (2)

T. Sato and I. Sone, "Development of bulk-optic current sensor using glass ring type Faraday cells," Opt. Rev. 4, 35-37 (1997).
[CrossRef]

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, "Sensitivity improvement of an optical current sensor with enhanced Faraday rotation," J. Lightwave Technol. 15, 2246-2252 (1997).
[CrossRef]

1991 (3)

T. D. Maffetone and T. M. McClelland, "345 kV substation optical current measurement system for revenue metering and protective relaying," IEEE Tran. Power Deliv. 6, 1430-1437 (1991).
[CrossRef]

J. T. Kohli and J. E. Shelby, "Magneto-optical properties of rare earth aluminosilicate glasses," Phys. Chem. Glass. 32, 109-114 (1991).

A. H. Rose, S. M. Etzel, and K. B. Rochford, "Optical fiber current sensors in high electric field environments," J. Lightwave Technol. 17, 1042-1048 (1991).
[CrossRef]

1984 (1)

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, "Faraday rotation in a single-mode fiber with controlled birefringence," Appl. Phys. B 35, 145-148 (1984).
[CrossRef]

1981 (2)

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, "Birefringence and polarization mode-dispersion in spun single mode fibers," Appl. Opt. 20, 2962-2968 (1981).
[CrossRef] [PubMed]

J. F. Owen, P. B. Dorain, and T. Kobayasi, "Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K," J. Appl. Phys. 52, 1216-1223 (1981).
[CrossRef]

1966 (1)

M. W. Shafer and J. C. Suits, "Preparation and Faraday rotation of divalent europium glasses," J. Am. Ceram. Soc. 49, 261-264 (1966).
[CrossRef]

Barlow, A. J.

Dorain, P. B.

J. F. Owen, P. B. Dorain, and T. Kobayasi, "Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K," J. Appl. Phys. 52, 1216-1223 (1981).
[CrossRef]

Etzel, S. M.

Fujita, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
[CrossRef]

Grexa, M.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, "Faraday rotation in a single-mode fiber with controlled birefringence," Appl. Phys. B 35, 145-148 (1984).
[CrossRef]

Hermann, G.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, "Faraday rotation in a single-mode fiber with controlled birefringence," Appl. Phys. B 35, 145-148 (1984).
[CrossRef]

Hirao, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
[CrossRef]

J. Qiu and K. Hirao, "The faraday effect in diamagnetic glass," J. Mater. Res. 13, 1358-1362 (1998).
[CrossRef]

Jones, G. R.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, "Sensitivity improvement of an optical current sensor with enhanced Faraday rotation," J. Lightwave Technol. 15, 2246-2252 (1997).
[CrossRef]

Kim, B. Y.

Kobayasi, T.

J. F. Owen, P. B. Dorain, and T. Kobayasi, "Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K," J. Appl. Phys. 52, 1216-1223 (1981).
[CrossRef]

Kohli, J. T.

J. T. Kohli and J. E. Shelby, "Magneto-optical properties of rare earth aluminosilicate glasses," Phys. Chem. Glass. 32, 109-114 (1991).

Kong, M. G.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, "Sensitivity improvement of an optical current sensor with enhanced Faraday rotation," J. Lightwave Technol. 15, 2246-2252 (1997).
[CrossRef]

Kratzer, J. H.

J. H. Kratzer and J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).
[CrossRef]

Lasnitschka, G.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, "Faraday rotation in a single-mode fiber with controlled birefringence," Appl. Phys. B 35, 145-148 (1984).
[CrossRef]

Lee, M. L.

Li, G.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, "Sensitivity improvement of an optical current sensor with enhanced Faraday rotation," J. Lightwave Technol. 15, 2246-2252 (1997).
[CrossRef]

Maffetone, T. D.

T. D. Maffetone and T. M. McClelland, "345 kV substation optical current measurement system for revenue metering and protective relaying," IEEE Tran. Power Deliv. 6, 1430-1437 (1991).
[CrossRef]

Matsuoka, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
[CrossRef]

McClelland, T. M.

T. D. Maffetone and T. M. McClelland, "345 kV substation optical current measurement system for revenue metering and protective relaying," IEEE Tran. Power Deliv. 6, 1430-1437 (1991).
[CrossRef]

Owen, J. F.

J. F. Owen, P. B. Dorain, and T. Kobayasi, "Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K," J. Appl. Phys. 52, 1216-1223 (1981).
[CrossRef]

Payne, D. N.

Qiu, J.

J. Qiu and K. Hirao, "The faraday effect in diamagnetic glass," J. Mater. Res. 13, 1358-1362 (1998).
[CrossRef]

Ramskov-Hansen, J. J.

Rochford, K. B.

Rose, A. H.

Sato, T.

T. Sato and I. Sone, "Development of bulk-optic current sensor using glass ring type Faraday cells," Opt. Rev. 4, 35-37 (1997).
[CrossRef]

Scharmann, A.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, "Faraday rotation in a single-mode fiber with controlled birefringence," Appl. Phys. B 35, 145-148 (1984).
[CrossRef]

Schroeder, J.

J. H. Kratzer and J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).
[CrossRef]

Shafer, M. W.

M. W. Shafer and J. C. Suits, "Preparation and Faraday rotation of divalent europium glasses," J. Am. Ceram. Soc. 49, 261-264 (1966).
[CrossRef]

Shelby, J. E.

J. T. Kohli and J. E. Shelby, "Magneto-optical properties of rare earth aluminosilicate glasses," Phys. Chem. Glass. 32, 109-114 (1991).

Soga, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
[CrossRef]

Sone, I.

T. Sato and I. Sone, "Development of bulk-optic current sensor using glass ring type Faraday cells," Opt. Rev. 4, 35-37 (1997).
[CrossRef]

Spencer, J. W.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, "Sensitivity improvement of an optical current sensor with enhanced Faraday rotation," J. Lightwave Technol. 15, 2246-2252 (1997).
[CrossRef]

Suits, J. C.

M. W. Shafer and J. C. Suits, "Preparation and Faraday rotation of divalent europium glasses," J. Am. Ceram. Soc. 49, 261-264 (1966).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
[CrossRef]

Yong, J. C.

Yun, S. H.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, "Faraday rotation in a single-mode fiber with controlled birefringence," Appl. Phys. B 35, 145-148 (1984).
[CrossRef]

IEEE Tran. Power Deliv. (1)

T. D. Maffetone and T. M. McClelland, "345 kV substation optical current measurement system for revenue metering and protective relaying," IEEE Tran. Power Deliv. 6, 1430-1437 (1991).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. W. Shafer and J. C. Suits, "Preparation and Faraday rotation of divalent europium glasses," J. Am. Ceram. Soc. 49, 261-264 (1966).
[CrossRef]

J. Appl. Phys. (1)

J. F. Owen, P. B. Dorain, and T. Kobayasi, "Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K," J. Appl. Phys. 52, 1216-1223 (1981).
[CrossRef]

J. Lightwave Technol. (2)

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, "Sensitivity improvement of an optical current sensor with enhanced Faraday rotation," J. Lightwave Technol. 15, 2246-2252 (1997).
[CrossRef]

A. H. Rose, S. M. Etzel, and K. B. Rochford, "Optical fiber current sensors in high electric field environments," J. Lightwave Technol. 17, 1042-1048 (1991).
[CrossRef]

J. Mater. Res. (2)

J. Qiu and K. Hirao, "The faraday effect in diamagnetic glass," J. Mater. Res. 13, 1358-1362 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, "Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions," J. Mater. Res. 13, 1989-1995 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

J. H. Kratzer and J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

T. Sato and I. Sone, "Development of bulk-optic current sensor using glass ring type Faraday cells," Opt. Rev. 4, 35-37 (1997).
[CrossRef]

Phys. Chem. Glass. (1)

J. T. Kohli and J. E. Shelby, "Magneto-optical properties of rare earth aluminosilicate glasses," Phys. Chem. Glass. 32, 109-114 (1991).

Other (2)

C. D. Perciante and J. A. Ferrari, "Faraday current sensor with temperature monitoring," 44, 6910-6912 (2005).

D. H. Kim, H. Y. Yang, B. H. Kim, U. C. Paek, and W. -T. Han, OECC/COIN, Yokohama Japan, p.512 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Spectral transmission characteristics of the CdSe quantum dots doped optical fiber.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup for the Faraday rotation measurement.

Fig. 3.
Fig. 3.

Variations of the Faraday rotation angle with respect to the applied magnetic field measured at 632 nm for the CdSe quantum dots optical fiber and the (undoped) single mode optical fiber (Both fiber length = 71 cm).

Fig. 4.
Fig. 4.

Remote current sensor using the CdSe quantum dots doped optical fiber.

Fig. 5.
Fig. 5.

Measured Faraday rotation angles at various current values flowing through the conductor. Continuous lines show the linear fit. There were 212 fiber loops with 7.5 cm radius around the drum.

Tables (2)

Tables Icon

Table 1. Comparison of Verdet constant of various optical fibers and silica glass at 632 nm.

Tables Icon

Table 2. Comparison of current sensor sensitivity of various optical fibers measured at 632 nm for one loop of 15 cm diameter.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ = 4 π λ [ ( n 2 + 2 ) 2 n ] ( χ + χ ) L
θ = VBL
S = θ IN
S = μ 0 V
n ± = 1 Ne / ( m ε 0 ) ( ω 0 2 ω 2 ) m ω c ω

Metrics