Abstract

We simulate a lossless one-dimensional photonic crystals (1D-PC) structure and show that negative refraction could be present near the low frequency edge of at least the second, fourth and sixth bandgaps. We experimentally demonstrate for the first time negative refraction in strongly modulated porous silicon 1D-PC in the visible and near infrared regions. This 1D-PC structure may allow the realization of short-focus Veselago lenses in different optical bands. An advantage of our structure is its simplicity allowing for cheap and rapid fabrication of samples.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat Biotechnol. 23, 313-320 (2005).
    [CrossRef]
  2. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
    [CrossRef] [PubMed]
  3. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
    [CrossRef] [PubMed]
  4. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis," Opt. Lett. 26, 701-703 (2001).
    [CrossRef]
  5. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
    [CrossRef]
  6. H. Dehghani, S.C. Davis, S. Jiang, B.W. Pogue, K.D. Paulsen, and M.S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt. Lett. 31, 365-367 (2006).
    [CrossRef] [PubMed]
  7. A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef]
  8. J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," J. Biomed. Opt. 10, 41207 (2005).
    [CrossRef] [PubMed]
  9. Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, "Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets," Opt. Lett. 30, 3338-3340 (2005).
    [CrossRef]
  10. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, "Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography," Opt. Lett. 28, 2339- 2341 (2003).
    [CrossRef]
  11. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, 41-93 (1999).
    [CrossRef] [PubMed]
  12. V. Ntziachristos, and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
    [CrossRef] [PubMed]
  13. H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
    [CrossRef] [PubMed]
  14. E. Alerstam, S. Andersson-Engels, and T. Svensson, "Improved accuracy in time-resolved diffuse reflectance spectroscopy," Opt. Express 16, 10440-10454 (2008).
    [CrossRef]
  15. M. Schweiger, S. Arridge, and I. Nissila, "GaussNewton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005).
    [CrossRef]
  16. G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, "Fluorescent optical tomography with large data sets," Opt. Lett. 33, 1744-1746 (2008).
    [CrossRef] [PubMed]
  17. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, "Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans," Opt. Express 15, 6696-6716 (2007).
    [CrossRef]

2008

2007

2006

2005

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, "Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets," Opt. Lett. 30, 3338-3340 (2005).
[CrossRef]

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," J. Biomed. Opt. 10, 41207 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat Biotechnol. 23, 313-320 (2005).
[CrossRef]

M. Schweiger, S. Arridge, and I. Nissila, "GaussNewton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005).
[CrossRef]

2003

2001

1999

S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, 41-93 (1999).
[CrossRef] [PubMed]

1998

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
[CrossRef] [PubMed]

Alerstam, E.

Andersson-Engels, S.

Arridge, S.

M. Schweiger, S. Arridge, and I. Nissila, "GaussNewton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005).
[CrossRef]

Arridge, S. R.

Bading, J. R.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Chaudhari, A.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Cherry, S. R.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Choe, R.

Conti, P. S.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Corkan, A.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
[CrossRef] [PubMed]

Corlu, A.

Culver, J. P.

Darvas, F.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Davis, S.C.

Dehghani, H.

Du, H.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
[CrossRef] [PubMed]

Durduran, T.

Economou, E. N.

Fuh, R. A.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
[CrossRef] [PubMed]

Garofalakis, A.

Gossage, K. W.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," J. Biomed. Opt. 10, 41207 (2005).
[CrossRef] [PubMed]

Graves, E.

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef]

Hillman, E. M. C.

Holboke, M. J.

Hoyt, C. C.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," J. Biomed. Opt. 10, 41207 (2005).
[CrossRef] [PubMed]

Jiang, S.

Kioussis, D.

Leahy, R. M.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Levenson, R. M.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," J. Biomed. Opt. 10, 41207 (2005).
[CrossRef] [PubMed]

Li, J.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
[CrossRef] [PubMed]

Lindsey, J. S.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
[CrossRef] [PubMed]

Mamalaki, C.

Mansfield, J. R.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," J. Biomed. Opt. 10, 41207 (2005).
[CrossRef] [PubMed]

Markel, V. A.

Meyer, H.

Moats, R. A.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Nissila, I.

M. Schweiger, S. Arridge, and I. Nissila, "GaussNewton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005).
[CrossRef]

Ntziachristos, V.

Panasyuk, G. Y.

Patterson, M.S.

Paulsen, K.D.

Pogue, B.W.

Psycharakis, S.

Ripoll, J.

H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat Biotechnol. 23, 313-320 (2005).
[CrossRef]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

Rosen, M. A.

Schnall, M. D.

Schotland, J. C.

Schulz, R. B.

Schweiger, M.

Smith, D. J.

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Svensson, T.

Wang, L. H. V.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat Biotechnol. 23, 313-320 (2005).
[CrossRef]

Wang, Z. M.

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat Biotechnol. 23, 313-320 (2005).
[CrossRef]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef]

V. Ntziachristos, and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef] [PubMed]

Yodh, A. G.

Zacharakis, G.

Appl. Opt.

Inverse Problems

S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, 41-93 (1999).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," J. Biomed. Opt. 10, 41207 (2005).
[CrossRef] [PubMed]

Med. Phys.

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef]

Nat Biotechnol.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat Biotechnol. 23, 313-320 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Photocem. Photobiol.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photocem. Photobiol. 68, 141-142 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Schweiger, S. Arridge, and I. Nissila, "GaussNewton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005).
[CrossRef]

A. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

1D-PC characteristics (a) SEM picture of Psi structure. (b) The reflectivity spectrum. (c) Photonic band structure calculated from the band edge condition (green bands).

Fig. 2.
Fig. 2.

1D-PC negative refraction condition properties (a) Band edge condition. (b) Relative perpendicular group velocity. (c) Relative effective mass. The green bands show the band edges and the yellow bands show approximately the three negative refraction bands inferred from the negative parabolicity of the y-direction bands . The angle of incidence is 25 degrees with TE polarization.

Fig. 3.
Fig. 3.

Schematic illustration of the negative refraction condition in the band structure. The parameter a represents the multilayer period. The black arrows show the energy of the wavelengths we used experimentally.

Fig. 4.
Fig. 4.

Finite element simulations at 419 nm, 633nm and 1350nm with monochromatic TE and TM polarized plane waves at an angle of 25 degrees. The blue graphs on top of each simulation represent power outflow distributions.

Fig. 5.
Fig. 5.

Finite element simulations at 419 nm, 633nm and 1350nm with monochromatic TE and TM polarized plane waves at an angle of 0 degrees.

Fig. 6.
Fig. 6.

A cartoon of the experimental setup (with the nine components) for the negative refraction observation and a picture of the real experimental setup. Both the sample and the camera are placed in translational and rotational stages. A broadband source along with bandpass filters and linear polarizers were used to explore the infrared and visible negative refraction bands. Captured images for the different conditions are shown in 9a–9d.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos ( ω n a a c ) cos ( ω n b c ) 1 2 ( n a n b + n b n a ) sin ( ω n a a c ) sin ( ω n b c ) = ± 1 .

Metrics