Abstract

The extraordinary transmission through silver film perforated with rectangular hole array with different aspect ratio was investigated. It was found that when the aspect ratio exceeded 7, the propagating surface plasmon polaritons (SPPs) transformed to localized resonance mode. The role of the Wood’s anomaly on the shape of the transmission spectrum is investigated. By designing the rectangular hole arrays in a rectangular lattice, the Wood’s anomaly can be shifted far apart from the transmission peak, the real localized resonance peak wavelength was identified and fitted well with the theoretical calculation using a simplified transmission-line model.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  3. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
    [CrossRef]
  4. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
    [CrossRef]
  5. Z. C. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96,233901 (2006).
    [CrossRef] [PubMed]
  6. Z. Ruan and M. Qiu, "Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef] [PubMed]
  7. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
    [CrossRef]
  8. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
    [CrossRef]
  9. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
    [CrossRef]
  10. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2006).
    [CrossRef]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  12. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001).
    [CrossRef]
  13. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures, " Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  14. Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  15. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
    [CrossRef]
  16. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
    [CrossRef] [PubMed]
  17. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, "Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons," Opt. Express 15, 18119-18129 (2007).
    [CrossRef] [PubMed]
  18. L. B. Whitbourn and R. C. Compton, "Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary," Appl. Opt. 24, 217-220 (1985).
    [CrossRef] [PubMed]
  19. R. Ulrich, "Far-Infrared Properties of Metallic Mesh and Its Complementary Structure," Infrared Phys. 7, 37-55 (1967).
    [CrossRef]

2007 (4)

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, "Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons," Opt. Express 15, 18119-18129 (2007).
[CrossRef] [PubMed]

2006 (5)

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Z. C. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96,233901 (2006).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, "Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
[CrossRef]

2005 (2)

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures, " Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

2004 (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

2002 (1)

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1985 (1)

1967 (1)

R. Ulrich, "Far-Infrared Properties of Metallic Mesh and Its Complementary Structure," Infrared Phys. 7, 37-55 (1967).
[CrossRef]

Brolo, A. G.

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2006).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Chang, Y. T.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Chen, C. Y.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Chuang, T. H.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Compton, R. C.

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Enoch, S.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Garcia-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Gordon, R.

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2006).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Gray, S. K.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Henzie, J.

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures, " Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Jeoung, S. C.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Kang, D. H.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Khim, K. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Klein Koerkamp, K. J.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Kuipers, L.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures, " Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Lee, J. W.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Lee, S. C.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Lienau, C.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

McMahon, J. M.

Odom, T. W.

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Qiu, M.

Z. C. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96,233901 (2006).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, "Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures, " Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, "Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96,233901 (2006).
[CrossRef] [PubMed]

Schatz, G. C.

Segerink, F. B.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Seo, M. A.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tsai, M. W.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Ulrich, R.

R. Ulrich, "Far-Infrared Properties of Metallic Mesh and Its Complementary Structure," Infrared Phys. 7, 37-55 (1967).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

van Hulst, N. F.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Whitbourn, L. B.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, and C. Lienau, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in square lattice," Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, "Far-Infrared Properties of Metallic Mesh and Its Complementary Structure," Infrared Phys. 7, 37-55 (1967).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (4)

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, "Strong discontinuities in the complex photonic band structure of transmission metallic gratings," Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Phys. Rev. Lett. (7)

P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures, " Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Z. C. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96,233901 (2006).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, "Ehanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2006).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The schematic diagrams showing the (a) top and (b) side view of the rectangular hole array in a square lattice. (c) The measurement setup and the sample lies in the xy plane with light incident in z direction.

Fig. 2.
Fig. 2.

Zero-order transmission spectra of rectangular hole array in a square lattice with aspect ratios R = 2, 4, 6, 7, 9, 11, and ∞ (1-D grating). All the lattice constants are 15 μm

Fig. 3.
Fig. 3.

The dispersion relations and transmission intensity of rectangular hole array as a function of photon energy and ky. The aspect ratios of rectangular holes are (a) 4, (b) 7, (c) 9 and (d) ∞ (1-D grating). All the lattice constants are 15 μm .

Fig. 4
Fig. 4

Zero-order transmission spectra of rectangular hole array in a square lattice with different incident angles. The lattice constants are 15 μm , and the aspect ratios R of rectangular holes are (a) 6 and (b) 7, respectively.

Fig. 5.
Fig. 5.

The transmission spectra of the rectangular hole array with aspect ratio of 9, i.e., the length is 12.7 μm and the width is 1.4 μm , in a rectangular lattice with the fixed period of 15 μm along x axis and the different periods from 3 to 18 μm m along y axis.

Fig. 6.
Fig. 6.

The transmission spectra of the rectangular hole arrays on Si or Ge substrate with aspect ratio of 9 in a rectangular lattice. The periods are 15 μm along x axis for all four samples, the periods along y axis ay are either 4 or 6 μm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ spp = a ( i 2 + j 2 ) ½ ( ε d ε m ε d + ε m ) ½
λ WA = a ( i 2 + j 2 ) ½ ( ε d ) ½
X c Z s = 2 n 1 2 + n 2 2 ( 4 ω 0 ln csc πa g ) 1 ( ω ω 0 ω 0 ω )
ω ' 0 = ω 0 2 n 1 2 + n 2 2

Metrics