Abstract

A special class of tunable liquid microlenses is presented here. The microlenses are generated by an electrowetting effect under an electrode-less configuration and they exhibit two different regimes that are named here as separated lens regime (SLR) and wave-like lens regime (WLR). The lens effect is induced by the pyroelectricity of polar dielectric crystals, as was proved in principle in a previous work by the same authors (S. Grilli et al., Opt. Express 16, 8084, 2008). Compared to that work, the improvements to the experimental set-up and procedure allow to reveal the two lens regimes which exhibit different optical properties. A digital holography technique is used to reconstruct the transmitted wavefront during focusing and a focal length variation in the millimetre range is observed. The tunability of such microlenses could be of great interest to the field of micro-optics thanks to the possibility to achieve focus tuning without moving parts and thus favouring the miniaturization of the optical systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, A. K. Agarwal, D. J. David, J. Beebe, and H. Jiang, "Adaptive liquid mcrolenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
    [CrossRef] [PubMed]
  2. B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).
    [CrossRef]
  3. L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 17, 157-170 (2000).
    [CrossRef]
  4. P. H. Huang, T. C. Huang, Y. T. Sun, and S. Y. Yang, "Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing," Opt. Express 16, 3041-3048 (2008).
    [CrossRef] [PubMed]
  5. A. Pikulin N. Bityurin, G. Langer, D. Brodoceanu, and D. Bauerle, "Hexagonal structures on metal-coated two-dimensional microlens arrays," Appl. Phys. Lett. 91,191106 (2007).
    [CrossRef]
  6. F. Krogmann, W. Monch, and H. Zappe, "A MEMS-based variable micro-lens system," J. Opt. A 8, S330-S336 (2006)
    [CrossRef]
  7. C. C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express 14, 4101-4106 (2006)
    [CrossRef] [PubMed]
  8. C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007).
    [CrossRef] [PubMed]
  9. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003).
    [CrossRef] [PubMed]
  10. D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 29, 2855-2857 (2004).
    [CrossRef]
  11. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
    [CrossRef]
  12. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
    [CrossRef] [PubMed]
  13. L. Hou, N. Smith, and J. Heikenfeld, "Electrowetting Modulation of Any Flat Optical Film," Appl. Phys. Lett. 90, 251114 (2007).
    [CrossRef]
  14. N. Smith, D. Abeysinghe, J. Heikenfeld, and J. W. Haus, Agile, "Wide-Angle Beam Steering with Electrowetting Microprisms," Opt. Express 14, 6557 (2006).
    [CrossRef] [PubMed]
  15. B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
    [CrossRef]
  16. S. Kuiper and B. H. W. Hendriks, "Variable- focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
    [CrossRef]
  17. J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006).
    [CrossRef]
  18. W. H. Hsieh and J. H. Chen, "Lens-Profile Control by Electrowetting Fabrication Technique," IEEE Photon. Technol. Lett. 17, 606-608 (2005).
    [CrossRef]
  19. G. Milne, G. D. M. Jeffries, and D. T. Chiu, "Tunable generation of Bessel beams with a fluidic axicon," Appl. Phys. Lett. 92, 261101 (2008).
    [CrossRef]
  20. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007).
    [CrossRef] [PubMed]
  21. X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
    [CrossRef]
  22. Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
    [CrossRef]
  23. W. Moench and H. Zappe, "Fabrication and testing of micro-lens arrays by all-liquid techniques," J. Opt. A 6, 330-337 (2004).
    [CrossRef]
  24. Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
    [CrossRef]
  25. H. Ren, Y. H. Fan, and S. T. Wu, "Liquid-crystal microlens arrays using patterned polymer networks," Opt. Lett. 29, 1608-1610 (2004).
    [CrossRef] [PubMed]
  26. H. Ren and S. T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Opt. Express 16, 2646-2652 (2008).
    [CrossRef] [PubMed]
  27. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 (2004).
    [CrossRef] [PubMed]
  28. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008).
    [CrossRef] [PubMed]
  29. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  30. S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008).
    [CrossRef]
  31. E. M. Bourim C. W. Moon, S. W. Lee, V. Sidorkin, and I. K. Yoo, "Pyroelectric electron emission from -Z face polar surface of lithium niobate monodomain single crystal," J. Electroceram 17, 479-485 (2006).
    [CrossRef]
  32. P. Ferraro, S. De Nicola, and G. Coppola, "Digital holography: recent advancements and prospective improvements for applications in microscopy," in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications series B. Javidi ed., (Springer, 2005), pp. 47-84.

2008

G. Milne, G. D. M. Jeffries, and D. T. Chiu, "Tunable generation of Bessel beams with a fluidic axicon," Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008).
[CrossRef]

H. Ren and S. T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Opt. Express 16, 2646-2652 (2008).
[CrossRef] [PubMed]

P. H. Huang, T. C. Huang, Y. T. Sun, and S. Y. Yang, "Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing," Opt. Express 16, 3041-3048 (2008).
[CrossRef] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008).
[CrossRef] [PubMed]

2007

C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007).
[CrossRef] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007).
[CrossRef] [PubMed]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

L. Hou, N. Smith, and J. Heikenfeld, "Electrowetting Modulation of Any Flat Optical Film," Appl. Phys. Lett. 90, 251114 (2007).
[CrossRef]

A. Pikulin N. Bityurin, G. Langer, D. Brodoceanu, and D. Bauerle, "Hexagonal structures on metal-coated two-dimensional microlens arrays," Appl. Phys. Lett. 91,191106 (2007).
[CrossRef]

B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
[CrossRef]

2006

J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006).
[CrossRef]

F. Krogmann, W. Monch, and H. Zappe, "A MEMS-based variable micro-lens system," J. Opt. A 8, S330-S336 (2006)
[CrossRef]

L. Dong, A. K. Agarwal, D. J. David, J. Beebe, and H. Jiang, "Adaptive liquid mcrolenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

C. C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express 14, 4101-4106 (2006)
[CrossRef] [PubMed]

N. Smith, D. Abeysinghe, J. Heikenfeld, and J. W. Haus, Agile, "Wide-Angle Beam Steering with Electrowetting Microprisms," Opt. Express 14, 6557 (2006).
[CrossRef] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
[CrossRef] [PubMed]

E. M. Bourim C. W. Moon, S. W. Lee, V. Sidorkin, and I. K. Yoo, "Pyroelectric electron emission from -Z face polar surface of lithium niobate monodomain single crystal," J. Electroceram 17, 479-485 (2006).
[CrossRef]

2005

W. H. Hsieh and J. H. Chen, "Lens-Profile Control by Electrowetting Fabrication Technique," IEEE Photon. Technol. Lett. 17, 606-608 (2005).
[CrossRef]

2004

2003

2000

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 17, 157-170 (2000).
[CrossRef]

1993

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Abeysinghe, D.

Anderson, P. A.

Berge, B.

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

Chan, M. L.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Chang, C. A.

Chang, Y. H.

J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006).
[CrossRef]

Chen, J. H.

W. H. Hsieh and J. H. Chen, "Lens-Profile Control by Electrowetting Fabrication Technique," IEEE Photon. Technol. Lett. 17, 606-608 (2005).
[CrossRef]

Chen, S.

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Cheng, C. C.

Cheng, C. M.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Cheng, W.

B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
[CrossRef]

Chiu, D. T.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, "Tunable generation of Bessel beams with a fluidic axicon," Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Choi, Y.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Chronis, N.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 17, 157-170 (2000).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 17, 157-170 (2000).
[CrossRef]

De Nicola, S.

Dharmatilleke, S.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Dong, L.

L. Dong, A. K. Agarwal, D. J. David, J. Beebe, and H. Jiang, "Adaptive liquid mcrolenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Fan, Y. H.

Ferraro, P.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008).
[CrossRef] [PubMed]

S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008).
[CrossRef]

Finizio, A.

Fox, D.

Grilli, S.

S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008).
[CrossRef]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008).
[CrossRef] [PubMed]

Haus, J. W.

Heikenfeld, J.

L. Hou, N. Smith, and J. Heikenfeld, "Electrowetting Modulation of Any Flat Optical Film," Appl. Phys. Lett. 90, 251114 (2007).
[CrossRef]

B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
[CrossRef]

N. Smith, D. Abeysinghe, J. Heikenfeld, and J. W. Haus, Agile, "Wide-Angle Beam Steering with Electrowetting Microprisms," Opt. Express 14, 6557 (2006).
[CrossRef] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, "Variable- focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Ho, M. S.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Hou, L.

L. Hou, N. Smith, and J. Heikenfeld, "Electrowetting Modulation of Any Flat Optical Film," Appl. Phys. Lett. 90, 251114 (2007).
[CrossRef]

Hsieh, W. H.

W. H. Hsieh and J. H. Chen, "Lens-Profile Control by Electrowetting Fabrication Technique," IEEE Photon. Technol. Lett. 17, 606-608 (2005).
[CrossRef]

Huang, P. H.

Huang, T. C.

Huang, T. J.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007).
[CrossRef] [PubMed]

Huang, X.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Jeffries, G. D. M.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, "Tunable generation of Bessel beams with a fluidic axicon," Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Jeong, K. H.

Juluri, B. K.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007).
[CrossRef] [PubMed]

Justis, N.

Khaw, A. H.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Kim, H. R.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kim, J. H.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Krogmann, F.

F. Krogmann, W. Monch, and H. Zappe, "A MEMS-based variable micro-lens system," J. Opt. A 8, S330-S336 (2006)
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, "Variable- focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Lao, Y.

B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
[CrossRef]

LeDuc, P. R.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Lee, G. B.

J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006).
[CrossRef]

Lee, K. H.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Lee, L. P.

Lee, Y. M.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Lien, K. Y.

J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006).
[CrossRef]

Lin, J. L.

J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006).
[CrossRef]

Lin, Q.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Liu, G. L.

Lo, Y. H.

Lu, Y.

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Mao, X.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007).
[CrossRef] [PubMed]

Miccio, L

S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008).
[CrossRef]

Miccio, L.

Milne, G.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, "Tunable generation of Bessel beams with a fluidic axicon," Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Moench, W.

W. Moench and H. Zappe, "Fabrication and testing of micro-lens arrays by all-liquid techniques," J. Opt. A 6, 330-337 (2004).
[CrossRef]

Monch, W.

F. Krogmann, W. Monch, and H. Zappe, "A MEMS-based variable micro-lens system," J. Opt. A 8, S330-S336 (2006)
[CrossRef]

Moran, P. M.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Paturzo, M.

S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

Ren, H.

Rodriguez, I.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 17, 157-170 (2000).
[CrossRef]

Smith, N.

L. Hou, N. Smith, and J. Heikenfeld, "Electrowetting Modulation of Any Flat Optical Film," Appl. Phys. Lett. 90, 251114 (2007).
[CrossRef]

N. Smith, D. Abeysinghe, J. Heikenfeld, and J. W. Haus, Agile, "Wide-Angle Beam Steering with Electrowetting Microprisms," Opt. Express 14, 6557 (2006).
[CrossRef] [PubMed]

Su, C. C.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Sun, B.

B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
[CrossRef]

Sun, Y. T.

Tan, K. W.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Vespini, V.

Waldeisen, J. R.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007).
[CrossRef] [PubMed]

Wang, B.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Wang, L.

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Wu, B.

Wu, S. T.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Yang, S. Y.

Yeh, J. A.

Zappe, H.

F. Krogmann, W. Monch, and H. Zappe, "A MEMS-based variable micro-lens system," J. Opt. A 8, S330-S336 (2006)
[CrossRef]

W. Moench and H. Zappe, "Fabrication and testing of micro-lens arrays by all-liquid techniques," J. Opt. A 6, 330-337 (2004).
[CrossRef]

Zhang, D. Y.

Zhou, K.

B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
[CrossRef]

Appl. Phys. Lett.

A. Pikulin N. Bityurin, G. Langer, D. Brodoceanu, and D. Bauerle, "Hexagonal structures on metal-coated two-dimensional microlens arrays," Appl. Phys. Lett. 91,191106 (2007).
[CrossRef]

B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, "Variable- focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

G. Milne, G. D. M. Jeffries, and D. T. Chiu, "Tunable generation of Bessel beams with a fluidic axicon," Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008).
[CrossRef]

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

L. Hou, N. Smith, and J. Heikenfeld, "Electrowetting Modulation of Any Flat Optical Film," Appl. Phys. Lett. 90, 251114 (2007).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Eur. Phys. J. E

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

W. H. Hsieh and J. H. Chen, "Lens-Profile Control by Electrowetting Fabrication Technique," IEEE Photon. Technol. Lett. 17, 606-608 (2005).
[CrossRef]

J. Electroceram

E. M. Bourim C. W. Moon, S. W. Lee, V. Sidorkin, and I. K. Yoo, "Pyroelectric electron emission from -Z face polar surface of lithium niobate monodomain single crystal," J. Electroceram 17, 479-485 (2006).
[CrossRef]

J. Opt. A

F. Krogmann, W. Monch, and H. Zappe, "A MEMS-based variable micro-lens system," J. Opt. A 8, S330-S336 (2006)
[CrossRef]

W. Moench and H. Zappe, "Fabrication and testing of micro-lens arrays by all-liquid techniques," J. Opt. A 6, 330-337 (2004).
[CrossRef]

Lab. Chip

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007).
[CrossRef] [PubMed]

Langmuir

J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006).
[CrossRef]

Meas. Sci. Technol.

S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008).
[CrossRef]

Nature

L. Dong, A. K. Agarwal, D. J. David, J. Beebe, and H. Jiang, "Adaptive liquid mcrolenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Opt. Commun.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 17, 157-170 (2000).
[CrossRef]

Opt. Express

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003).
[CrossRef] [PubMed]

K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 (2004).
[CrossRef] [PubMed]

C. C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express 14, 4101-4106 (2006)
[CrossRef] [PubMed]

N. Smith, D. Abeysinghe, J. Heikenfeld, and J. W. Haus, Agile, "Wide-Angle Beam Steering with Electrowetting Microprisms," Opt. Express 14, 6557 (2006).
[CrossRef] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
[CrossRef] [PubMed]

C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Opt. Express 16, 2646-2652 (2008).
[CrossRef] [PubMed]

P. H. Huang, T. C. Huang, Y. T. Sun, and S. Y. Yang, "Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing," Opt. Express 16, 3041-3048 (2008).
[CrossRef] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Other

P. Ferraro, S. De Nicola, and G. Coppola, "Digital holography: recent advancements and prospective improvements for applications in microscopy," in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications series B. Javidi ed., (Springer, 2005), pp. 47-84.

Supplementary Material (5)

» Media 1: MOV (642 KB)     
» Media 2: MOV (536 KB)     
» Media 3: MOV (3977 KB)     
» Media 4: MOV (2419 KB)     
» Media 5: MOV (1599 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Optical microscope image of a typical PPLN with a square array of hexagonal reversed domains; (b), (c) schematic views of the sample cross section corresponding to the wave-like lenses regime and to the separated lenses regime of the microlens array, respectively. In both cases the temperature of the substrate is decreasing. The difference between the two regimes stands in the liquid thickness. The black arrows indicate the orientation of the spontaneous polarization.

Fig. 2.
Fig. 2.

Schematic view of the interferometric configuration. PBS polarizing beam splitter; MO microscope objective; PH pin-hole; M mirror; BS beam splitter.

Fig. 3.
Fig. 3.

Movies showing the evolution of the wrapped mod 2π phase map during (a) the heating (Media 1) and (b) the cooling process (Media 2).

Fig. 4.
Fig. 4.

Experimental and fitted 1D profiles of the unwrapped phase distribution corresponding to (a) the heating and (b) cooling process; (c) (d) focal length variation as a function of temperature in case of the heating and the cooling process, respectively.

Fig. 5.
Fig. 5.

Two-dimensional representation of (a) the wrapped and (b) the unwrapped phase map corresponding to 4×4 microlens array.

Fig. 6.
Fig. 6.

(a) Measured phase distribution and (b) corresponding fitted surface; surface distribution of (c) the focus term, (d) the third order spherical aberration, (e) the astigmatism at 45° term, (f) the astigmatism at 90°, (g) the triangular astigmatism on x base, (h) the triangular astigmatism on y base.

Fig. 7.
Fig. 7.

Movies of the wrapped phase distribution evaluated for a portion of the lens array in case of separated lenses SRL (a) heating (Media 3) and (b) cooling (Media 4).

Fig. 8.
Fig. 8.

Profile of the phase distribution during (a) heating and (b) cooling; (c),(d) temperature dependence of the focal length for the heating and the cooling process, respectively, in case of separated lenses.

Fig. 9.
Fig. 9.

(a) Measured and fitted phase profile; (b) list of the coefficient values of the linear expansion resulting from the fitting process.

Fig. 10.
Fig. 10.

Optical microscope movie (Media 5) of a single liquid lens of an array of separated lenses after formation and successive thermal tuning.

Tables (1)

Tables Icon

Table 1. List of coefficient values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ ( x ) = π λ ( x 2 ) f
W ( x ) = a ( 1 ) x 4 + a ( 2 ) x 2 + a ( 2 ) x + a ( 4 )

Metrics