Abstract

Conventional liquid microlens arrays are facing bottlenecks in controlling droplet size and shape, and limited aperture ratio. We report a new liquid/solvent approach to overcome these obstacles for making uniform droplet array and achieving ~90% aperture ratio. The droplets are very stable due to the pinning effect of the polymer walls and substrate surfaces. Using the fabricated droplet array, we demonstrate a tunable-focus microlens array based on dielectrophoretic effect. The microlens array exhibits a large dynamic range and fast response time (tens of milliseconds). Besides liquid microlens arrays, this fabrication method also opens a new door for making other tunable photonic devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [CrossRef]
  2. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  3. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
    [CrossRef] [PubMed]
  4. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [CrossRef]
  5. S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  6. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [CrossRef] [PubMed]
  7. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  8. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008).
    [CrossRef] [PubMed]
  9. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]
  10. C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
    [CrossRef]
  11. S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
    [CrossRef] [PubMed]
  12. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,” Opt. Lett. 16(7), 532–534 (1991).
    [CrossRef] [PubMed]
  13. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [CrossRef] [PubMed]
  14. G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
    [CrossRef]
  15. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
    [CrossRef] [PubMed]
  16. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [CrossRef] [PubMed]
  17. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [CrossRef]
  18. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
    [CrossRef] [PubMed]
  19. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
    [CrossRef]
  20. P. Penfield, and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).
  21. H. Ren, S. T. Wu, and Y. H. Lin, “In situ observation of fringing-field-induced phase separation in a liquid-crystal-monomer mixture,” Phys. Rev. Lett. 100(11), 117801 (2008).
    [CrossRef] [PubMed]

2009 (3)

2008 (6)

2006 (4)

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[CrossRef] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

2004 (2)

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

2003 (3)

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[CrossRef] [PubMed]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

1991 (1)

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Baer, E.

Beadie, G.

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Berdichevsky, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Chang, C. A.

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Cheng, C. C.

Choi, J.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Chronis, N.

De Nicola, S.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Draheim, J.

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Ferraro, P.

Finizio, A.

Giridhar, M. S.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Grilli, S.

Haddock, J. N.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Hendriks, H. W.

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Hiltner, A.

Hirsa, A. H.

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[CrossRef]

Jeong, K. H.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Kamberger, R.

Kazmierczak, T.

Kippelen, B.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Lee, L. P.

Lepkowicz, R. S.

Li, G.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Lien, V.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Lin, Y. H.

H. Ren, S. T. Wu, and Y. H. Lin, “In situ observation of fringing-field-induced phase separation in a liquid-crystal-monomer mixture,” Phys. Rev. Lett. 100(11), 117801 (2008).
[CrossRef] [PubMed]

Lin, Y. J.

Liu, G. L.

Lo, Y. H.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Lopez, C. A.

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Mathine, D. L.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Meredith, G.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Miccio, L.

Moharam, M. G. J.

Patel, J. S.

Peseux, J.

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Peyghambarian, N.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Ponting, M.

Rastani, K.

Ren, H.

Sandrock, M. L.

Schneider, F.

Shirk, J. S.

Tabiryan, N.

Valley, P.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

Varahramyan, K.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Vespini, V.

Waibel, P.

Wallrabe, U.

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Wiggins, M. J.

Wu, S. T.

Xianyu, H.

Xu, S.

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Yang, Y.

Yeh, J. A.

Zhang, D.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

J. Micromech. Microeng. (1)

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Nat. Photonics (1)

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[CrossRef]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Opt. Express (10)

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[CrossRef] [PubMed]

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008).
[CrossRef] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
[CrossRef] [PubMed]

S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

H. Ren, S. T. Wu, and Y. H. Lin, “In situ observation of fringing-field-induced phase separation in a liquid-crystal-monomer mixture,” Phys. Rev. Lett. 100(11), 117801 (2008).
[CrossRef] [PubMed]

Other (1)

P. Penfield, and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).

Supplementary Material (1)

» Media 1: MPG (1114 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig 1.
Fig 1.

Procedure for fabricating a liquid droplet array: (a) Coating UV polymer on substrate surface (left). UV exposure through a photomask (middle) and forming a cavity array (right). (b) Dripping the oil mixture on the patterned cavity array film, and (c) Solvent evaporation.

Fig. 2
Fig. 2

The prepared liquid droplet arrays observed using an optical microscope: (a) Droplet with square aperture, and (b) Droplet with circular aperture.

Fig. 3
Fig. 3

Droplet arrays prepared under different conditions: (a) Oil-filled cavities vs. empty cavities (bottom two rows), (b) their imaging properties, (c) a droplet array with neighboring droplets connected, and (d) its imaging property.

Fig. 4
Fig. 4

Side-view structure of a microlens and the focus change of the lens versus voltage: (a) A relaxed state, (b) A contracting state, and (c) Imaging behaviors of the 1×3 microlens array at V=0 (top), V=120 Vrms (middle), and V=170 Vrms (bottom).

Fig. 5
Fig. 5

The voltage-dependent focal length of a dielectric liquid lens.

Fig. 6
Fig. 6

(a) Measured response time of a microlens with circular aperture, and (b) dynamic tuning of 3×3 mircolens array driven from a defocused state to a focused state (Media 1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f 3 = 3 V d π ( 1 cos θ ) ( 2 cos 2 θ cos θ ) ( n 1 n 2 ) 3 ,
F = 1 2 ε 0 ( ε 2 ε 1 ) ( E E ) ,

Metrics