Abstract

A corner-cube-based retro-detection photocell is introduced. The structure consists of three independent and mutually perpendicular photodiodes (PDs), whose differential photocurrents can be used to probe the alignment state of incident beams. These differential photocurrents are used in an actively-controlled triangulation procedure to optimize the communication channel alignment in a free-space optical (FSO) system. The active downlink and passive uplink communication capabilities of this system are demonstrated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
    [CrossRef]
  2. S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
    [CrossRef]
  3. S. Harnilovic, Wireless Optical Communication Systems (Springer, New York, 2004).
  4. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
    [CrossRef]
  5. P. B. Chu, N. R. Lo, E. C. Berg, and K. S. J. Pister, “Optical communication using micro corner cube reflectors,” in Proceedings of IEEE Micro Electro Mechanical Systems Workshop (IEEE, Nagoya, 1997), pp. 350–355.
  6. W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52(2), 269–279 (2004).
    [CrossRef]
  7. D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
    [CrossRef]
  8. G. Chartier, Introduction to Optics (Springer, New York, 2005).
  9. M. Scholl, “Complex reflectivity of a corner cube retroreflector,” Proc. SPIE 2268, 422–430 (1994).
    [CrossRef]
  10. L. Zhou, K. S. J. Pister, and J. M. Kahn, “Assembled corner-cube retroflector quadruplet,” in Proceedings of IEEE Micro Electro Mechanical Systems (IEEE, Las Vegas, 2002), pp. 556–559.
  11. C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. A, Pure Appl. Opt. 11(8), 085404 (2009).
    [CrossRef]
  12. Y. Sun, H. Ma, Z. Zhang, and G. Fu, “Rapid response mechanism of pi cell,” Appl. Phys. Lett. 92(11), 111117 (2008).
    [CrossRef]

2009

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. A, Pure Appl. Opt. 11(8), 085404 (2009).
[CrossRef]

2008

Y. Sun, H. Ma, Z. Zhang, and G. Fu, “Rapid response mechanism of pi cell,” Appl. Phys. Lett. 92(11), 111117 (2008).
[CrossRef]

2006

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

2005

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

2004

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52(2), 269–279 (2004).
[CrossRef]

2002

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

1994

M. Scholl, “Complex reflectivity of a corner cube retroreflector,” Proc. SPIE 2268, 422–430 (1994).
[CrossRef]

Agren, D.

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

Almqvist, S.

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

Andersson, J. Y.

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

Burris, H. R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Cheng, J.

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. A, Pure Appl. Opt. 11(8), 085404 (2009).
[CrossRef]

Collier, C. M.

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. A, Pure Appl. Opt. 11(8), 085404 (2009).
[CrossRef]

Collins, S.

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

Elston, S. J.

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

Faulkner, G. E.

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

Fu, G.

Y. Sun, H. Ma, Z. Zhang, and G. Fu, “Rapid response mechanism of pi cell,” Appl. Phys. Lett. 92(11), 111117 (2008).
[CrossRef]

Gilbreath, G. C.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Goetz, P. G.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Holzman, J. F.

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. A, Pure Appl. Opt. 11(8), 085404 (2009).
[CrossRef]

Jin, X.

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. A, Pure Appl. Opt. 11(8), 085404 (2009).
[CrossRef]

Junique, S.

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

Kahn, J. M.

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52(2), 269–279 (2004).
[CrossRef]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

Koplow, J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Liu, J. J.

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

Ma, H.

Y. Sun, H. Ma, Z. Zhang, and G. Fu, “Rapid response mechanism of pi cell,” Appl. Phys. Lett. 92(11), 111117 (2008).
[CrossRef]

Mahon, R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Mao, W.

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52(2), 269–279 (2004).
[CrossRef]

Moore, C. I.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Noharet, B.

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

O’Brien, D. C.

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

Oh, E.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Parry-Jones, L. A.

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

Rabinovich, W. S.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Scholl, M.

M. Scholl, “Complex reflectivity of a corner cube retroreflector,” Proc. SPIE 2268, 422–430 (1994).
[CrossRef]

Stell, M. F.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Suite, M. R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Sun, Y.

Y. Sun, H. Ma, Z. Zhang, and G. Fu, “Rapid response mechanism of pi cell,” Appl. Phys. Lett. 92(11), 111117 (2008).
[CrossRef]

Swingen, L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Vilcheck, M. J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Wang, Q.

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

Witkowsky, J. L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Yuan, W. W.

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

Zhang, Z.

Y. Sun, H. Ma, Z. Zhang, and G. Fu, “Rapid response mechanism of pi cell,” Appl. Phys. Lett. 92(11), 111117 (2008).
[CrossRef]

Zhu, X.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

Appl. Phys. Lett.

Y. Sun, H. Ma, Z. Zhang, and G. Fu, “Rapid response mechanism of pi cell,” Appl. Phys. Lett. 92(11), 111117 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Junique, D. Agren, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “A modulating retroreflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1), 85–87 (2006).
[CrossRef]

IEEE Trans. Commun.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52(2), 269–279 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. A, Pure Appl. Opt. 11(8), 085404 (2009).
[CrossRef]

Opt. Eng.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44(5), 056001 (2005).
[CrossRef]

Proc. SPIE

D. C. O’Brien, W. W. Yuan, J. J. Liu, G. E. Faulkner, S. J. Elston, S. Collins, and L. A. Parry-Jones, “Optical wireless communications for micromachines,” Proc. SPIE 6304, 63041A (2006).
[CrossRef]

M. Scholl, “Complex reflectivity of a corner cube retroreflector,” Proc. SPIE 2268, 422–430 (1994).
[CrossRef]

Other

L. Zhou, K. S. J. Pister, and J. M. Kahn, “Assembled corner-cube retroflector quadruplet,” in Proceedings of IEEE Micro Electro Mechanical Systems (IEEE, Las Vegas, 2002), pp. 556–559.

G. Chartier, Introduction to Optics (Springer, New York, 2005).

P. B. Chu, N. R. Lo, E. C. Berg, and K. S. J. Pister, “Optical communication using micro corner cube reflectors,” in Proceedings of IEEE Micro Electro Mechanical Systems Workshop (IEEE, Nagoya, 1997), pp. 350–355.

S. Harnilovic, Wireless Optical Communication Systems (Springer, New York, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SolidWorks schematic of the retro-detection photocell. The structure consists of three mutually-orthogonal silicon PDs arranged in an interior corner. A Pi-cell LC modulator is mounted at the entrance interface for optical modulation. Differential combinations of PD 1, PD 2, and PD 3 are used to triangulate the incident laser’s ϕ and θ incident angle.

Fig. 2
Fig. 2

Experimental results for the retro-detection photocell with three orientations. Time-varying photocurrents i1 (t), i2 (t), and i3 (t) and differential photocurrents, i1-2 (t), i1-3 (t), and i2-3 (t), are shown for a polar angle θ ≈54.7° and (a) ϕ = 20°, (b) ϕ = 30°, and (c) ϕ = 45°. The insets show the retro-detection photocell at the respective orientations viewed from the laser source.

Fig. 3
Fig. 3

Ray-tracing model results for the retro-detection photocell are shown. The (a) summed differential photocurrent, (b) summed photocurrent, and (c) retroreflected power are shown as a function of the azimuthal angle ϕ and polar angle θ. A representative optimization process is shown by the black trace along the ABC curve in (a).

Fig. 4
Fig. 4

Photocurrents for the (a) active downlink mode and (b) passive uplink mode are shown as a function of time for the retro-detection photocell with modulated laser illumination and continuous laser illumination with a Pi-cell LC modulator (not shown), respectively. The photocell is in the optimal orientation with ϕ = 45° and θ ≈54.7° (1 m propagation). The figure inset shows the retro-detection structure at this optimal orientation as viewed by the source.

Metrics