Abstract

This paper presents a novel method in near-field beam shaping based on the precise optical modeling of a gallium nitride light-emitting diode (GaN LED). A Monte Carlo ray tracing simulation has been utilized to calculate the spatial photon distribution near the LED’s top. By analyzing the ray data in near-field, the miniaturized lens profile is created and machined with aspherical surfaces and total internal reflection (TIR) Fresnel facets. The prototype lens reduce the viewing angle of the LED from 150° to 17.5° at full width half maximum (FWHM) while increasing the peak luminous intensity 10 times. The array of proposed lens with CSP LEDs exhibits feasibility of ultra thin uniform illumination in near-field.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
    [CrossRef]
  2. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265–2272 (2006).
    [CrossRef] [PubMed]
  3. X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
    [CrossRef]
  4. Y. H. Kwon, C. S. Lee, and W. B. Kang, “Wafer-level-chip-scale package and method of fabrication,” US patent, 7569423 (2008).
  5. L. Nguyen, “Wafer-Level chip-scale packaging,” in Proceedings of Professional Development Course 55th Electronic Components & Technology Conference, (Orlando, Florida, 2005), pp. 4–19.
  6. D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, “Development of an integral optics system for a slim optical mouse in a slim portable electric device,” J. Vac. Sci. Technol. B 27(3), 1422–1427 (2009).
    [CrossRef]
  7. http://www.crucialtec.com/
  8. http://www.et-trends.com/files/ELEC_DESIGN-MOEMS.pdf
  9. http://www.luminus.com/
  10. P. Schreiber, S. Kudaev, P. Dannberg, and A. Gebhardt, “Microoptics for homogeneous LED-illumination,” Proc. SPIE 6196, 61960–1 - 61960–9 (2006).
  11. X. Zhao, Z. L. Fang, J. C. Chu, X. A Mu, and G. G Mu, “ Illumination system using LED sources for pocket-size projectors,” Appl. Opt. 46(4), 522–526 (2007).
    [CrossRef] [PubMed]
  12. J. Carves, Introduction to nonimaging optics, (CRE Press, New York, 2008).
  13. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009).
    [CrossRef] [PubMed]
  14. I. Moreno and C. C. Sun, “LED array: where does far-field begin?” Proc. SPIE 7058, 70580R–70580R–9 (2008).
    [CrossRef]
  15. Y. Ding, X. Liu, Z. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [CrossRef] [PubMed]
  16. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN –based light-emitting diodes with Surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007).
    [CrossRef] [PubMed]
  17. F. Hu, K. Y. Qian, and Y. Luo, “Far-field pattern simulation of flip-chip bonded power light-emitting diodes by a Monte Carlo photon-tracing method,” Appl. Opt. 44(14), 2768–2771 (2005).
    [CrossRef] [PubMed]
  18. A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
    [CrossRef]
  19. http://www.crosslight.jp/Products/lastip/MRS_06Fall3.pdf
  20. H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102(2), 026103–1, 026103–3 (2007).
    [CrossRef]
  21. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31(14), 2193–2195 (2006).
    [CrossRef] [PubMed]
  22. I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16(3), 1808–1819 (2008).
    [CrossRef] [PubMed]
  23. I. Ashdown and M. Salsbury, “A Near-field Goniospectroradiometer for LED Measurements,” Proc. SPIE 6342, 634215–1 - 634215–11 (2006).
  24. B. V. Giel, Y. Meuret, and H. Thienpont, “Design of axisymmetrical tailored concentrators for LED light source application,” Proc. SPIE 6196, 619603–1 - 619603–10 (2006).

2009

D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, “Development of an integral optics system for a slim optical mouse in a slim portable electric device,” J. Vac. Sci. Technol. B 27(3), 1422–1427 (2009).
[CrossRef]

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009).
[CrossRef] [PubMed]

2008

2007

X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[CrossRef]

H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102(2), 026103–1, 026103–3 (2007).
[CrossRef]

X. Zhao, Z. L. Fang, J. C. Chu, X. A Mu, and G. G Mu, “ Illumination system using LED sources for pocket-size projectors,” Appl. Opt. 46(4), 522–526 (2007).
[CrossRef] [PubMed]

T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN –based light-emitting diodes with Surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007).
[CrossRef] [PubMed]

2006

2005

Avendaño-Alejo, M.

Benisty, H.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

Carr, J.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Chien, W. T.

Cho, S. C.

D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, “Development of an integral optics system for a slim optical mouse in a slim portable electric device,” J. Vac. Sci. Technol. B 27(3), 1422–1427 (2009).
[CrossRef]

Chu, J. C.

David, A.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

DenBaars, S. P.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

Desmulliez, M. Y. P.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Ding, Y.

Edagawa, K.

H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102(2), 026103–1, 026103–3 (2007).
[CrossRef]

Fang, Z. L.

Fujii, T.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

Gao, K. F.

Gu, P. F.

Gunningham, G.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Hane, K.

D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, “Development of an integral optics system for a slim optical mouse in a slim portable electric device,” J. Vac. Sci. Technol. B 27(3), 1422–1427 (2009).
[CrossRef]

Hasegawa, H.

H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102(2), 026103–1, 026103–3 (2007).
[CrossRef]

Ho, Y. L.

X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[CrossRef]

Hsieh, C. C.

Hu, E. L.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

Hu, F.

Huang, H. C.

X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[CrossRef]

Huang, S. M.

Kamimura, Y.

H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102(2), 026103–1, 026103–3 (2007).
[CrossRef]

Kwok, H. S.

X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[CrossRef]

Langton, C.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Lee, S. K.

D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, “Development of an integral optics system for a slim optical mouse in a slim portable electric device,” J. Vac. Sci. Technol. B 27(3), 1422–1427 (2009).
[CrossRef]

Lee, T. X.

Lee, Y. L.

Liu, X.

Lo, Y. C.

Luo, Y.

Ma, S. H.

McFarland, G.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

McGroddy, K.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

McKee, A.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Mckendrick, D.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Meredith, W.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Moreno, I.

Mu, G. G

Mu, X. A

Nakamura, S.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

Qian, K. Y.

Sharma, R.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

Sun, C. C.

Tan, L.

X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[CrossRef]

Tzonchev, R. I.

Weisbuch, C.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

Weston, N.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Woo, D. K.

D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, “Development of an integral optics system for a slim optical mouse in a slim portable electric device,” J. Vac. Sci. Technol. B 27(3), 1422–1427 (2009).
[CrossRef]

Yonenaga, I.

H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102(2), 026103–1, 026103–3 (2007).
[CrossRef]

Yu, X. J.

X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[CrossRef]

Zhao, X.

Zheng, Z.

Appl. Opt.

Appl. Phys. Lett.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124–061126 (2006).
[CrossRef]

J. Appl. Phys.

H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102(2), 026103–1, 026103–3 (2007).
[CrossRef]

J. Disp. Technol.

X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED Based Projection Systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[CrossRef]

J. Vac. Sci. Technol. B

D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, “Development of an integral optics system for a slim optical mouse in a slim portable electric device,” J. Vac. Sci. Technol. B 27(3), 1422–1427 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Precis. Eng.

J. Carr, M. Y. P. Desmulliez, N. Weston, D. Mckendrick, G. Gunningham, G. McFarland, W. Meredith, A. McKee, and C. Langton, “Miniaturized Optical encoder for ultra precision metrology systems,” Precis. Eng. 33(3), 263–267 (2009).
[CrossRef]

Other

I. Ashdown and M. Salsbury, “A Near-field Goniospectroradiometer for LED Measurements,” Proc. SPIE 6342, 634215–1 - 634215–11 (2006).

B. V. Giel, Y. Meuret, and H. Thienpont, “Design of axisymmetrical tailored concentrators for LED light source application,” Proc. SPIE 6196, 619603–1 - 619603–10 (2006).

I. Moreno and C. C. Sun, “LED array: where does far-field begin?” Proc. SPIE 7058, 70580R–70580R–9 (2008).
[CrossRef]

J. Carves, Introduction to nonimaging optics, (CRE Press, New York, 2008).

http://www.crosslight.jp/Products/lastip/MRS_06Fall3.pdf

http://www.crucialtec.com/

http://www.et-trends.com/files/ELEC_DESIGN-MOEMS.pdf

http://www.luminus.com/

P. Schreiber, S. Kudaev, P. Dannberg, and A. Gebhardt, “Microoptics for homogeneous LED-illumination,” Proc. SPIE 6196, 61960–1 - 61960–9 (2006).

Y. H. Kwon, C. S. Lee, and W. B. Kang, “Wafer-level-chip-scale package and method of fabrication,” US patent, 7569423 (2008).

L. Nguyen, “Wafer-Level chip-scale packaging,” in Proceedings of Professional Development Course 55th Electronic Components & Technology Conference, (Orlando, Florida, 2005), pp. 4–19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Epitaxial structure of the modeled GaN chip. (b) Relative radiation intensity of extracted rays in far-field

Fig. 2
Fig. 2

(a) Geometric model of the tested CSP LED. (b) Schematic diagram used in the simulation of the LED’s angular luminous intensity distribution. (c) Schematic diagram of measurement principle with a near-field goniospectrometer

Fig. 3
Fig. 3

Simulation and experiment on the luminous characteristics of the LED depicted in Fig. 2. (a) Comparison of far-field light distribution. The detector is an infinite sphere in simulation. (b) Comparison of near-field light distribution for the top emission. (c) Comparison of extracting luminous flux throughout five surfaces, representative modeled package (center) – each of the five emitting surfaces is denoted at the top (Z + ), and side (plus/minus Y and plus/minus X). (d) Relative angular luminous intensity distribution of the modeled LED for each of the five emitting surfaces.

Fig. 4
Fig. 4

(a) Schematic diagram for the calculation of the focal smear. (b) Exemplary calculation for the tested CSP LED; h (height of encapsulant) = 400 μm, hc (height of MQWs) = 145 μm, and a (half length of encapsulant) = 800 μm, w (width of chip) = 150 μm.

Fig. 5
Fig. 5

(a) Beam shaping principle of the NBSL. (b) 3D model view of the designed NBSL

Fig. 6
Fig. 6

Captured image of machined near-field colliminator. Photography of the machined prototype lens (left), magnified facets ´50 (middle), and magnified facets ´100 (right).

Fig. 7
Fig. 7

Measurement of near-field illumination characteristics with NBSL. (a) Near-field relative illuminance distribution of the NBSL. (b) Comparison of relative luminous intensity with/without the NBSL. The diameter of the detector in the simulation is the same as that of the NBSL.

Fig. 8
Fig. 8

Effect of alignment error. (a) Lateral translation error (simulation). (b) Vertical translation error.

Fig. 9
Fig. 9

Array of the modeled LED with near-field beam shaping lens, and illuminance distribution, each lens has a 0.2 mm assembling allowance.

Tables (1)

Tables Icon

Table 1 Parameters of each layer in the simulated LED

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Etendue ( mm 2 sr ) = π ( refractive     index ) 2 ( illuminated     area     of     the     imager ) 2 sin 2 θ
N C C = i j [ I s ( φ i , θ j ) I s ¯ ] [ I e ( φ i , θ j ) I e ¯ ] i j [ I s ( φ i , θ j ) I s ¯ ] 2 ​ ​ i j [ I e ( φ i , θ j ) I e ¯ ] 2
P T = ( h h 0 ) tan φ tan ( sin 1 ( n 1 / n 2 sin φ ) ) ,               w h e r e     h 0 > h c
P S T = ( a w ) tan θ tan ( sin 1 ( n 1 / n 2 sin θ )
P S L = ( a w ) tan α tan ( sin 1 ( n 1 / n 2 sin α )
P S T = a tan ( n 1 / n 2 sin θ ) ( a w ) tan θ + h h c
P S L = a tan ( n 1 / n 2 sin α ) ( a w ) tan α + h + h c ,                   w h e r e     α         sin 1 ( a / h c )
R = m ( n 1 1 ) ( h h c ) tan ϕ tan ( sin 1 ( n 1 / n 2 sin ϕ ) )                                                   ,         w h e r e         m = F e . f . / | P T | max
ρ = r cos ( α E ) cos α [ cot α sin ( α E ) + sin E ]

Metrics