Abstract

The two principal equations in [Opt. Express 16, 6528–6536 (2008)] which both contain an error are corrected in this erratum.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Out-of-phase mixed holographic gratings : a quantative analysis

Martin Fally, Mostafa Ellabban, and Irena Drevenšek-Olenik
Opt. Express 16(9) 6528-6536 (2008)

Study of angular responses of mixed amplitude–phase holographic gratings: shifted Borrmann effect

L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A. Beléndez
Opt. Lett. 26(11) 786-788 (2001)

Design of holographic concave gratings for Seya-Namioka monochromators

H. Noda, T. Namioka, and M. Seya
J. Opt. Soc. Am. 64(8) 1043-1048 (1974)

References

  • View by:
  • |
  • |
  • |

  1. M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings : a quantative analysis,” Opt. Express 16(9), 6528–6536 ( 2008).
    [Crossref]

2008 (1)

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings : a quantative analysis,” Opt. Express 16(9), 6528–6536 ( 2008).
[Crossref]

Drevenšek-Olenik, I.

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings : a quantative analysis,” Opt. Express 16(9), 6528–6536 ( 2008).
[Crossref]

Ellabban, M.

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings : a quantative analysis,” Opt. Express 16(9), 6528–6536 ( 2008).
[Crossref]

Fally, M.

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings : a quantative analysis,” Opt. Express 16(9), 6528–6536 ( 2008).
[Crossref]

Opt. Express (1)

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings : a quantative analysis,” Opt. Express 16(9), 6528–6536 ( 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η ± 1 ( θ ) = 2 A ( θ ) κ 1 2 + κ 2 2 2 κ 1 κ 2 sin φ z ( cosh [ z 1 / 2 D cos ψ ] cos [ z 1 / 2 D sin ψ ] )
η 0 ( θ ) = A ( θ ) 2 z ( ( z + ϑ 2 ) cosh [ z 1 / 2 D cos ψ ] + ( z ϑ 2 ) cos [ z 1 / 2 D sin ψ ]
+ 2 cos φ cos φ ϑ z 1 / 2 { sin ψ sinh [ z 1 / 2 D cos ψ ] cos ψ sin [ z 1 / 2 D sin ψ ] } ) .

Metrics