Abstract

We present a high-power, high-efficiency and low threshold laser prototype based on doped ceramic Yb3+:YAG. We achieved an output power of 9 W with a slope efficiency of 73% and a threshold of 1 W at 1030 nm in quasi-Continuous Wave (QCW). Moreover, we obtained an output power 7.7 W with a slope efficiency of 60% in Continuous Wave (CW). Finally, a characterization of a low losses tunable cavity for several laser wavelengths with an output power exceeding 5 W is reported.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
    [CrossRef] [PubMed]
  2. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
    [CrossRef] [PubMed]
  3. V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
    [CrossRef]
  4. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb:YLF,” Opt. Express 15(13), 7994–8002 (2007).
    [CrossRef] [PubMed]
  5. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [CrossRef] [PubMed]
  6. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 40(24), 4303–4307 (2001).
    [CrossRef]
  7. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).
  8. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [CrossRef]
  9. K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
    [CrossRef]
  10. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
    [CrossRef]
  11. J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
    [CrossRef] [PubMed]
  12. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
    [CrossRef] [PubMed]
  13. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101–121103 (2007).
    [CrossRef]
  14. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008).
    [CrossRef]
  15. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
    [CrossRef]
  16. J. Dong, K. Ueda, A. Shirakawa, H. Tagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [CrossRef] [PubMed]
  17. H. Yoshioka, S. Nakamura, T. Okawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
    [CrossRef] [PubMed]
  18. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
    [CrossRef]
  19. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
    [CrossRef]

2009 (2)

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
[CrossRef]

H. Yoshioka, S. Nakamura, T. Okawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (4)

2006 (1)

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

2005 (3)

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

2004 (2)

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

2003 (1)

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

2001 (2)

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 40(24), 4303–4307 (2001).
[CrossRef]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

1999 (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Aguiló, M.

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Alderighi, D.

Balembois, F.

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Bonelli, L.

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Brunner, F.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Camy, P.

Chan, C. C.

Chen, W.

Chénais, S.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

Debourg, G.

Deng, P.

Di Lieto, A.

Díaz, F.

Dong, J.

Doualan, J. L.

Druon, F.

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Erbert, G.

Gainutdinov, R. V.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Galzerano, G.

Georges, P.

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Graf, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Griebner, U.

Harder, C.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Hosokawa, S.

Huber, G.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Jacquemet, M.

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Kaminskii, A. A.

Keller, U.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Kisel, V. E.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Kong, J.

Kuleshov, N. V.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Kullberg, M. P.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Kupchenko, M. I.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Laporta, P.

Liu, Y.

Lu, J.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

Lucas-Leclin, G.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Lucca, A.

Massons, J.

Mateos, X.

Matrosov, V. N.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Matrosova, T. A.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Matsubara, Y.

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
[CrossRef]

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008).
[CrossRef]

Mix, E.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Moncorgé, R.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Morrier-Genoud, F.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Moser, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Nakamura, S.

H. Yoshioka, S. Nakamura, T. Okawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
[CrossRef] [PubMed]

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
[CrossRef]

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008).
[CrossRef]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Ogawa, T.

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
[CrossRef]

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008).
[CrossRef]

Okawa, T.

Parisi, D.

Paschotta, R.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Petrov, V.

Rivier, S.

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Shirakava, A.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Shirakawa, A.

Skirakawa, A.

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

Spühler, G. J.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Tagi, H.

Taira, T.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101–121103 (2007).
[CrossRef]

Takaichi, K.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

Tang, D. Y.

Toci, G.

Tokurakawa, M.

Tolstik, N. A.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Tonelli, M.

Troshin, A. E.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Tsunekane, M.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101–121103 (2007).
[CrossRef]

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Tagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

Vannini, M.

Wada, S.

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
[CrossRef]

H. Yoshioka, S. Nakamura, T. Okawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
[CrossRef] [PubMed]

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008).
[CrossRef]

Weyers, M.

Xie, X.

Xu, J.

Yagi, H.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

Yanagitani, T.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Tagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

Yoshioka, H.

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
[CrossRef]

H. Yoshioka, S. Nakamura, T. Okawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
[CrossRef] [PubMed]

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008).
[CrossRef]

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Zhang, Y.

Zhao, B.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

Zorn, M.

Appl. Opt. (1)

Appl. Phys. B (3)

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101–121103 (2007).
[CrossRef]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009).
[CrossRef]

Opt. Commun. (1)

S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Status Solid A (1)

K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the experimental set-up. EM: end mirror (flat); FM: folding mirror (ROC=150 mm); OC: output coupling grating at the Littrow angle; C denotes the crystal. The untunable cavity is obtained by substituting the grating with a flat output coupler mirror.

Fig. 2
Fig. 2

Grating efficiency curve for the TM polarization. At 1030 nm the diffraction efficiency is 85.8% (m=1) and 5.9% (m=0) while at 1050 nm the efficiency is 84.5% (m=1) and 8.8% (m=0).

Fig. 3
Fig. 3

Slope efficiency obtained in QCW (a) and CW (b), with different output coupler mirrors.

Fig. 4
Fig. 4

Fraction of absorbed pump power from the ceramic. The output coupler is T=1.5%.

Fig. 5
Fig. 5

Tuning curve obtained by means of a Littrow-grating-mount as output coupler.

Fig. 6
Fig. 6

Laser peak power as a function of the absorbed pump power with a Littrow-grating-mount as output coupler in QCW (a) and in CW (b) operation mode.

Metrics