Abstract

We report on a diode pumped, semiconductor saturable absorber mirror mode-locked picosecond Nd:YVO4 oscillator with cavity-dumping. In pure cw-mode-locking this laser produced up to 17W of average power at a pulse repetition rate of 9.7MHz, corresponding to a pulse energy of 1.7µJ. Using an electro-optic cavity dumper, we achieved average powers up to 7.8W at 500kHz and 10W at 1MHz dumping rate. With corresponding pulse energies of 15.6µJ and 10µJ respectively and pulsewidths around 10ps, this laser could become a compact source for materials processing applications, alternative to more complex schemes such as regenerative amplifiers or ultra-long resonator oscillators.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30(7), 714–716 (2005).
    [CrossRef] [PubMed]
  2. B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
    [CrossRef]
  3. L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
    [CrossRef] [PubMed]
  4. C. Gerhard, F. Druon, P. Blandin, M. Hanna, F. Balembois, P. Georges, and F. Falcoz, “Efficient versatile-repetition-rate picosecond source for material processing applications,” Appl. Opt. 47(7), 967–974 (2008).
    [CrossRef] [PubMed]
  5. V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, “Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator,” Opt. Lett. 28(14), 1275–1277 (2003).
    [CrossRef] [PubMed]
  6. D. N. Papadopoulos, S. Forget, M. Delaigue, F. Druon, F. Balembois, and P. Georges, “Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate,” Opt. Lett. 28(19), 1838–1840 (2003).
    [CrossRef] [PubMed]
  7. J. Neuhaus, D. Bauer, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Pulse Energies Exceeding 20 µJ Directly from a Subpicosecond Yb:YAG Oscillator by Use of Active Angular Multiplexing,” in Advanced Solid-State Photonics (ASSP) 2009 paper: MC1.
  8. T. Südmeyer, S. V. Marchese, C. R. Baer, S. Hashimoto, A. G. Engqvist, M. Golling, D. J. H. C. Maas, and U. Keller, Femtosecond Thin Disk Lasers with >10 μJ Pulse Energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), CFP1.
  9. F. Dausinger, et al., Femtosecond Technology for Technical and Medical Applications, (Springer, 2004), pp. 17–33.
  10. D. A. Clubley, A. S. Bell, and G. Friel, “High average power Nd:YVO4 based pico-second regenerative amplifier,” Proc. SPIE 6871, 68711D (2008).
    [CrossRef]
  11. A. Killi, J. Dörring, U. Morgner, M. J. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13(6), 1916–1922 (2005).
    [CrossRef] [PubMed]
  12. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. J. Lederer, and U. Morgner, “Passively mode-locked and cavity-dumped Yb:KY(WO(4))(2) oscillator with positive dispersion,” Opt. Express 15(24), 16017–16021 (2007).
    [CrossRef] [PubMed]
  13. A.-L. Calendron, K. S. Wentsch, and M. J. Lederer, “High power cw and mode-locked oscillators based on Yb:KYW multi-crystal resonators,” Opt. Express 16(23), 18838–18843 (2008).
    [CrossRef] [PubMed]
  14. W. Köchner, Solid-State Laser Engineering (Springer, 2006), pp. 69–73.
  15. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt. 3(4), 523 (1964).
    [CrossRef]
  16. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
    [CrossRef]
  17. H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
    [CrossRef]

2008 (3)

2007 (2)

2005 (2)

2004 (1)

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

2003 (2)

1995 (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

1975 (1)

H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

1964 (1)

Balembois, F.

Bell, A. S.

D. A. Clubley, A. S. Bell, and G. Friel, “High average power Nd:YVO4 based pico-second regenerative amplifier,” Proc. SPIE 6871, 68711D (2008).
[CrossRef]

Blandin, P.

Brovelli, L. R.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

Calasso, I.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

Calendron, A.-L.

Clubley, D. A.

D. A. Clubley, A. S. Bell, and G. Friel, “High average power Nd:YVO4 based pico-second regenerative amplifier,” Proc. SPIE 6871, 68711D (2008).
[CrossRef]

Courjaud, A.

Deguil-Robin, N.

Delaigue, M.

Dörring, J.

Druon, F.

Du, K.-M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

Duering, M.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

Emons, M.

Falcoz, F.

Forget, S.

Frei, J.

Friel, G.

D. A. Clubley, A. S. Bell, and G. Friel, “High average power Nd:YVO4 based pico-second regenerative amplifier,” Proc. SPIE 6871, 68711D (2008).
[CrossRef]

Georges, P.

Gerhard, C.

Giesekus, J.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

Hanna, M.

Haus, H. A.

H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

Herriott, D.

Hönninger, C.

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

Keller, U.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

Killi, A.

Kogelnik, H.

Kolev, V. Z.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, “Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator,” Opt. Lett. 28(14), 1275–1277 (2003).
[CrossRef] [PubMed]

Kompfner, R.

Kopf, D.

A. Killi, J. Dörring, U. Morgner, M. J. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13(6), 1916–1922 (2005).
[CrossRef] [PubMed]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

Lederer, M. J.

Liem, A.

Limpert, J.

Luther-Davies, B.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, “Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator,” Opt. Lett. 28(14), 1275–1277 (2003).
[CrossRef] [PubMed]

Madsen, N. R.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

Manek-Hönninger, I.

McDonagh, L.

Morgner, U.

Mottay, E.

Nebel, A.

Palmer, G.

Papadopoulos, D. N.

Rode, A. V.

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, “Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator,” Opt. Lett. 28(14), 1275–1277 (2003).
[CrossRef] [PubMed]

Röser, E.

Salin, F.

Schreiber, T.

Schultze, M.

Siegel, M.

Steinmann, A.

Tünnermann, A.

Wallenstein, R.

Wentsch, K. S.

Zellmer, H.

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50-W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1051–1055 (2004).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

Opt. Eng. (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

D. A. Clubley, A. S. Bell, and G. Friel, “High average power Nd:YVO4 based pico-second regenerative amplifier,” Proc. SPIE 6871, 68711D (2008).
[CrossRef]

Other (4)

W. Köchner, Solid-State Laser Engineering (Springer, 2006), pp. 69–73.

J. Neuhaus, D. Bauer, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Pulse Energies Exceeding 20 µJ Directly from a Subpicosecond Yb:YAG Oscillator by Use of Active Angular Multiplexing,” in Advanced Solid-State Photonics (ASSP) 2009 paper: MC1.

T. Südmeyer, S. V. Marchese, C. R. Baer, S. Hashimoto, A. G. Engqvist, M. Golling, D. J. H. C. Maas, and U. Keller, Femtosecond Thin Disk Lasers with >10 μJ Pulse Energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), CFP1.

F. Dausinger, et al., Femtosecond Technology for Technical and Medical Applications, (Springer, 2004), pp. 17–33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the laser cavity: M3 is an output coupler of 30% (cw) or 0.8% (mode-locking or cavity-dumping), M1 and M4 are dichroic mirrors, M2 and M5 are curved mirrors with R = 500mm. L represents the collimating and focusing optics of the fiber coupled pump diodes LD1 and LD2, XTAL1 and 2 are 0.27% doped Nd:YVO4-crystals, M6 is an optional end mirror of the short cavity, M9 and M10 are the in and out coupling mirrors of the Herriott cell M11 (R = 1600mm), M12 and M13 (both flat); M8 is a curved mirror with R = 1600mm; M7 and M14 are both flat HR-mirrors; TFP is a thin-film polarizer; PDG is a pulse delay generator.

Fig. 2
Fig. 2

Pulse train of mode-locked laser with 9.7 MHz repetition rate.

Fig. 3
Fig. 3

Internal pulse train with a cavity-dumping frequency of fdump = 1MHz. The dumped output power is 10W and the corresponding pulse energy is 10µJ(a), numerical simulation of same situation (b)

Fig. 4
Fig. 4

Intensity autocorrelation of the pulses, cavity dumped at 500kHz. The pulse width is calculated from the sech2-fit also displayed.

Tables (2)

Tables Icon

Table 1 Overview over calculated and measured output power and pulse duration

Tables Icon

Table 2 Simulation parameters

Metrics