Abstract

In this paper, we present the modulation of a tightly focused evanescent field by a nano-plasmonic waveguide, which consists of two silver nanorods lying on the interface of two dielectric media. Linearly polarized and radially polarized illuminating beams are investigated under the influence of localized surface plasmons effect. It is demonstrated that different polarization components of the tightly focused evanescent field can be modulated accordingly. The results obtained from the finite difference time domain simulation show that super-resolved focal spot can be achieved using the nano-plasmonic waveguide structure.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Stefan Alexander Maier, Plasmonics Fundamentals and Applications. (Springer, New York, 2007).
  2. Y. F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48(3), 617–622 (2009).
    [CrossRef] [PubMed]
  3. Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
    [CrossRef]
  4. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowire,” Appl. Phys. Lett. 89(23), 233119 (2006).
    [CrossRef]
  5. J. Z. Zhang and C. Noguez, “Plasmonic Optical Properties and Applications of Metal Nanostructures,” Plasmonics 3(4), 127–150 (2008).
    [CrossRef]
  6. J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008).
    [CrossRef]
  7. J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, “Hybrid-effect transmission enhancement induced by oblique illumination in nano-ridge waveguide,” Opt. Express 15(18), 11741–11749 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11741 .
    [CrossRef] [PubMed]
  8. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  9. W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
    [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  11. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
    [CrossRef]
  12. Z. Zhu, M. G. Somekh, and M. P. Steven, “Behavior of localized surface plasmon near focus,” Opt. Commun. 207(1-6), 113–119 (2002).
    [CrossRef]
  13. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
    [CrossRef]
  14. Baohua Jia, Xiaosong Gan, and Min Gu. “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6821
  15. B. Jia, X. Gan, and M. Gu, “Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization,” Optik (Stuttg.) 115(8), 358–362 (2004).
    [CrossRef]
  16. A. Husakou and J. Herrmann, “Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer,” Opt. Express 14(23), 11194–11203 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11194 .
    [CrossRef] [PubMed]
  17. A. Husakou and J. Herrmann, “Focusing of scanning light beams below the diffraction limit without near-field spatial control using a saturable absorber and a negative-refraction material,” Phys. Rev. Lett. 96(1), 013902 (2006).
    [CrossRef] [PubMed]
  18. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed (Artech House, Norwood, MA, 2005).
  19. M. Gu, Advanced Optical Imaging Theory(Springer, Heidelberg, 1999).
  20. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  21. W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quantum Electron. 38(9-11), 843–856 (2007).
    [CrossRef]
  22. R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma,” IEEE Trans. Antenn. Propag. 39(1), 29–34 (1991).
    [CrossRef]
  23. D. M. Sullivan, Electromagenetic Simulation Using the FDTD Method(IEEE Press, New York, 2000).
  24. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/abstract.cfm?uri=oe-10-7-324 .
    [PubMed]
  25. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43(5), 1063–1071 (2004).
    [CrossRef] [PubMed]

2009 (1)

2008 (3)

J. Z. Zhang and C. Noguez, “Plasmonic Optical Properties and Applications of Metal Nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

2007 (4)

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
[CrossRef]

W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quantum Electron. 38(9-11), 843–856 (2007).
[CrossRef]

W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
[CrossRef]

J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, “Hybrid-effect transmission enhancement induced by oblique illumination in nano-ridge waveguide,” Opt. Express 15(18), 11741–11749 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11741 .
[CrossRef] [PubMed]

2006 (3)

A. Husakou and J. Herrmann, “Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer,” Opt. Express 14(23), 11194–11203 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11194 .
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, “Focusing of scanning light beams below the diffraction limit without near-field spatial control using a saturable absorber and a negative-refraction material,” Phys. Rev. Lett. 96(1), 013902 (2006).
[CrossRef] [PubMed]

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowire,” Appl. Phys. Lett. 89(23), 233119 (2006).
[CrossRef]

2005 (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

2004 (2)

B. Jia, X. Gan, and M. Gu, “Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization,” Optik (Stuttg.) 115(8), 358–362 (2004).
[CrossRef]

J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43(5), 1063–1071 (2004).
[CrossRef] [PubMed]

2002 (2)

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/abstract.cfm?uri=oe-10-7-324 .
[PubMed]

Z. Zhu, M. G. Somekh, and M. P. Steven, “Behavior of localized surface plasmon near focus,” Opt. Commun. 207(1-6), 113–119 (2002).
[CrossRef]

1998 (2)

1991 (1)

R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma,” IEEE Trans. Antenn. Propag. 39(1), 29–34 (1991).
[CrossRef]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Chau, Y. F.

Chau, Y.-F.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
[CrossRef]

Chen, M. W.

Chon, J. W. M.

Djurišic, A. B.

Elazar, J. M.

Fang, J.-Y.

Gallagher, D. F. G.

W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quantum Electron. 38(9-11), 843–856 (2007).
[CrossRef]

Gan, X.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization,” Optik (Stuttg.) 115(8), 358–362 (2004).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Girard, C.

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowire,” Appl. Phys. Lett. 89(23), 233119 (2006).
[CrossRef]

Gu, M.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization,” Optik (Stuttg.) 115(8), 358–362 (2004).
[CrossRef]

J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43(5), 1063–1071 (2004).
[CrossRef] [PubMed]

Herrmann, J.

A. Husakou and J. Herrmann, “Focusing of scanning light beams below the diffraction limit without near-field spatial control using a saturable absorber and a negative-refraction material,” Phys. Rev. Lett. 96(1), 013902 (2006).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, “Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer,” Opt. Express 14(23), 11194–11203 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11194 .
[CrossRef] [PubMed]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hu, G.-W.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
[CrossRef]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hunsberger, F.

R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma,” IEEE Trans. Antenn. Propag. 39(1), 29–34 (1991).
[CrossRef]

Husakou, A.

A. Husakou and J. Herrmann, “Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer,” Opt. Express 14(23), 11194–11203 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11194 .
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, “Focusing of scanning light beams below the diffraction limit without near-field spatial control using a saturable absorber and a negative-refraction material,” Phys. Rev. Lett. 96(1), 013902 (2006).
[CrossRef] [PubMed]

Jia, B.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization,” Optik (Stuttg.) 115(8), 358–362 (2004).
[CrossRef]

Kano, H.

Kawata, S.

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Kunz, K. S.

R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma,” IEEE Trans. Antenn. Propag. 39(1), 29–34 (1991).
[CrossRef]

Laroche, T.

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowire,” Appl. Phys. Lett. 89(23), 233119 (2006).
[CrossRef]

Leger, J. R.

Luebbers, R. J.

R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma,” IEEE Trans. Antenn. Propag. 39(1), 29–34 (1991).
[CrossRef]

Majewski, M. L.

Mizuguchi, S.

Nakano, H.

J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008).
[CrossRef]

Noguez, C.

J. Z. Zhang and C. Noguez, “Plasmonic Optical Properties and Applications of Metal Nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Payne, F. P.

W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quantum Electron. 38(9-11), 843–856 (2007).
[CrossRef]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Pernice, W. H. P.

W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quantum Electron. 38(9-11), 843–856 (2007).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Rakic, A. D.

Saj, W. M.

W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
[CrossRef]

Shen, L.-F.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
[CrossRef]

Shibayama, J.

J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008).
[CrossRef]

Shieh, H.-P. D.

Somekh, M. G.

Z. Zhu, M. G. Somekh, and M. P. Steven, “Behavior of localized surface plasmon near focus,” Opt. Commun. 207(1-6), 113–119 (2002).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Steven, M. P.

Z. Zhu, M. G. Somekh, and M. P. Steven, “Behavior of localized surface plasmon near focus,” Opt. Commun. 207(1-6), 113–119 (2002).
[CrossRef]

Takahashi, R.

J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008).
[CrossRef]

Tien, C.-H.

Tsai, D. P.

Y. F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48(3), 617–622 (2009).
[CrossRef] [PubMed]

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Yamauchi, J.

J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008).
[CrossRef]

Yang, T.-J.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
[CrossRef]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Zhan, Q.

Zhang, J. Z.

J. Z. Zhang and C. Noguez, “Plasmonic Optical Properties and Applications of Metal Nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Zhu, Z.

Z. Zhu, M. G. Somekh, and M. P. Steven, “Behavior of localized surface plasmon near focus,” Opt. Commun. 207(1-6), 113–119 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowire,” Appl. Phys. Lett. 89(23), 233119 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma,” IEEE Trans. Antenn. Propag. 39(1), 29–34 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Opt. Commun. (1)

Z. Zhu, M. G. Somekh, and M. P. Steven, “Behavior of localized surface plasmon near focus,” Opt. Commun. 207(1-6), 113–119 (2002).
[CrossRef]

Opt. Eng. (1)

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007).
[CrossRef]

Opt. Express (3)

Opt. Quantum Electron. (1)

W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quantum Electron. 38(9-11), 843–856 (2007).
[CrossRef]

Optik (Stuttg.) (1)

B. Jia, X. Gan, and M. Gu, “Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization,” Optik (Stuttg.) 115(8), 358–362 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

A. Husakou and J. Herrmann, “Focusing of scanning light beams below the diffraction limit without near-field spatial control using a saturable absorber and a negative-refraction material,” Phys. Rev. Lett. 96(1), 013902 (2006).
[CrossRef] [PubMed]

Plasmonics (1)

J. Z. Zhang and C. Noguez, “Plasmonic Optical Properties and Applications of Metal Nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Proc. SPIE (1)

W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
[CrossRef]

Other (5)

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed (Artech House, Norwood, MA, 2005).

M. Gu, Advanced Optical Imaging Theory(Springer, Heidelberg, 1999).

Stefan Alexander Maier, Plasmonics Fundamentals and Applications. (Springer, New York, 2007).

D. M. Sullivan, Electromagenetic Simulation Using the FDTD Method(IEEE Press, New York, 2000).

Baohua Jia, Xiaosong Gan, and Min Gu. “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6821

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of nano-plasmonic waveguide. (a) Nanorods lie along x direction. (b) Nanorods lie along y direction.

Fig. 2
Fig. 2

The intensity distribution of evanescent electric field for linearly polarized focal beam at the interface. (a) I = |Ex|2 + |Ey|2 + |Ez|2 (b) |Ex|2 (c) |Ey|2 (d) |Ez|2 (Unit: V2/m2)

Fig. 3
Fig. 3

Intensity distributions for linearly polarized focal beam in xy plane of different distances from the interface. In the left column there is no nanorod. In the middle column the nanorods are lying along x direction. In the right column the nanorods are lying along y direction. (Unit: V2/m2)

Fig. 4
Fig. 4

Cross sections for polarization components of linearly polarized light along x axis at the xy plane 100 nm above the interface. (a) Without nanorods; (b) Nanorods lie along x direction; (c) Nanorods lie along y direction.

Fig. 5
Fig. 5

Intensity distributions for radially polarized focal beam in xy plane of different distances from the interface. In the left column there is no nanorod. In the middle column the nanorods are lying along x direction. In the right column the nanorods are lying along y direction. (Unit: V2/m2)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( r , Ψ , z ) = π i λ { [ I 0 + cos ( 2 Ψ ) I 2 ] i + sin ( 2 Ψ ) I 2 j + 2 i cos Ψ I 1 k }
I 0 = 0 α cos θ sin θ ( 1 + cos θ ) J 0 ( k r sin θ ) exp ( i k z cos θ ) d θ
I 1 = 0 α cos θ sin 2 θ J 1 ( k r sin θ ) exp ( i k z cos θ ) d θ
I 2 = 0 α cos θ sin θ ( 1 cos θ ) J 2 ( k r sin θ ) exp ( i k z cos θ ) d θ
E ( r , Ψ , z ) = 2 π i λ { cos Ψ I 1 i + sin Ψ I 1 j + I 0 k }
I 0 = 0 α cos θ sin 2 θ J 0 ( k r sin θ ) exp ( i k z cos θ ) d θ
I 1 = 0 α cos θ sin θ cos θ J 1 ( k r sin θ ) exp ( i k z cos θ ) d θ
Δ t = 0.985 c 1 / Δ x 2 + 1 / Δ y 2 + 1 / Δ z 2
ε r ( ω ) = 1 + ω p 2 i Γ ω ω 2

Metrics