Abstract

The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates ~ 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, ~ 10 nm away from the gain peak.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dingle, and C. H. Henry, U.S. Patent 3,983,302 (1976).
  2. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [CrossRef]
  3. O. B. Shchekin and D. G. Deppe, “1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
    [CrossRef]
  4. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
    [CrossRef]
  5. M. Osiński and J. Buus, “Linewidth Broadening Factor in Semiconductor Lasers – An Overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
    [CrossRef]
  6. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
    [CrossRef]
  7. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
    [CrossRef]
  8. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
    [CrossRef]
  9. J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
    [CrossRef]
  10. J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94(3), 1983–1989 (2003).
    [CrossRef]
  11. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
    [CrossRef]
  12. C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking Range and Stability of Injection Locked 1.54 μm InGaAsP Semiconductor Lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
    [CrossRef]
  13. I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988).
    [CrossRef]
  14. G. Liu, X. Jin, and S. L. Chuang, “Measurement of Linewidth Enhancement Factor of Semiconductor Lasers Using an Injection-Locking Technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
    [CrossRef]
  15. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
    [CrossRef]
  16. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
    [CrossRef]
  17. P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, “Hot-carrier thermalization induced self-phase modulation in semiconductor travelling wave amplifiers,” Appl. Phys. Lett. 59(1), 10–12 (1991).
    [CrossRef]
  18. S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
    [CrossRef]
  19. J. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett. 89(26), 261106 (2006).
    [CrossRef]
  20. O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 μm Region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
    [CrossRef]

2006 (2)

J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

J. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett. 89(26), 261106 (2006).
[CrossRef]

2005 (1)

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

2004 (3)

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[CrossRef]

2003 (2)

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94(3), 1983–1989 (2003).
[CrossRef]

2002 (1)

O. B. Shchekin and D. G. Deppe, “1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

2001 (1)

G. Liu, X. Jin, and S. L. Chuang, “Measurement of Linewidth Enhancement Factor of Semiconductor Lasers Using an Injection-Locking Technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

1999 (1)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

1997 (1)

S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
[CrossRef]

1991 (1)

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, “Hot-carrier thermalization induced self-phase modulation in semiconductor travelling wave amplifiers,” Appl. Phys. Lett. 59(1), 10–12 (1991).
[CrossRef]

1988 (1)

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988).
[CrossRef]

1987 (2)

M. Osiński and J. Buus, “Linewidth Broadening Factor in Semiconductor Lasers – An Overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 μm Region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

1986 (1)

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

1985 (1)

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking Range and Stability of Injection Locked 1.54 μm InGaAsP Semiconductor Lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Alphonse, G.

S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
[CrossRef]

Alphonse, G. A.

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, “Hot-carrier thermalization induced self-phase modulation in semiconductor travelling wave amplifiers,” Appl. Phys. Lett. 59(1), 10–12 (1991).
[CrossRef]

Arakawa, Y.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Asada, M.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

Bimberg, D.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Borri, P.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Buus, J.

M. Osiński and J. Buus, “Linewidth Broadening Factor in Semiconductor Lasers – An Overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

Chabran, C.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988).
[CrossRef]

Chen, J. X.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Choi, M. T.

J. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett. 89(26), 261106 (2006).
[CrossRef]

Chuang, S. L.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of Linewidth Enhancement Factor of Semiconductor Lasers Using an Injection-Locking Technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Coffie, R.

S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
[CrossRef]

Connolly, J.

S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
[CrossRef]

Dagens, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Debarge, G.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988).
[CrossRef]

Delfyett, P. J.

J. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett. 89(26), 261106 (2006).
[CrossRef]

S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
[CrossRef]

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, “Hot-carrier thermalization induced self-phase modulation in semiconductor travelling wave amplifiers,” Appl. Phys. Lett. 59(1), 10–12 (1991).
[CrossRef]

Deppe, D. G.

O. B. Shchekin and D. G. Deppe, “1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

Dutta, N. K.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking Range and Stability of Injection Locked 1.54 μm InGaAsP Semiconductor Lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Eliseev, P. G.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[CrossRef]

Fiore, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Fuchs, B. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Galbraith, I.

J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

Gallion, P.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988).
[CrossRef]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Gee, S.

S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
[CrossRef]

Henry, C. H.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking Range and Stability of Injection Locked 1.54 μm InGaAsP Semiconductor Lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Huyet, G.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

Jin, X.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of Linewidth Enhancement Factor of Semiconductor Lasers Using an Injection-Locking Technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Kim, J.

J. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett. 89(26), 261106 (2006).
[CrossRef]

Landreau, J.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Langbein, W.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Le Gouezigou, O.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Ledenstov, N. N.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

Lester, L. F.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Li, H.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Liu, G.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of Linewidth Enhancement Factor of Semiconductor Lasers Using an Injection-Locking Technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Make, D.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Malloy, K. J.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Markus, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Martinez, O. E.

O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 μm Region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

McPeake, D.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

Miyamoto, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

Molina Vázquez, J.

J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

Newell, T. C.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Nilsson, H. H.

J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

O’Reilly, E. P.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

Oksanen, J.

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94(3), 1983–1989 (2003).
[CrossRef]

Olsson, N. A.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking Range and Stability of Injection Locked 1.54 μm InGaAsP Semiconductor Lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Osinski, M.

M. Osiński and J. Buus, “Linewidth Broadening Factor in Semiconductor Lasers – An Overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

Ouyang, D.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Petitbon, I.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988).
[CrossRef]

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Provost, J.-G.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Schneider, S.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Sellin, R. L.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Shchekin, O. B.

O. B. Shchekin and D. G. Deppe, “1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

Silberberg, Y.

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, “Hot-carrier thermalization induced self-phase modulation in semiconductor travelling wave amplifiers,” Appl. Phys. Lett. 59(1), 10–12 (1991).
[CrossRef]

Stintz, A.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Suematsu, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

Thedrez, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Tulkki, J.

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94(3), 1983–1989 (2003).
[CrossRef]

Ukhanov, A. A.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[CrossRef]

Uskov, A. V.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

Woggon, U.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Zhang, J.-Z,

J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

Appl. Phys. Lett. (8)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

O. B. Shchekin and D. G. Deppe, “1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[CrossRef]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, “Hot-carrier thermalization induced self-phase modulation in semiconductor travelling wave amplifiers,” Appl. Phys. Lett. 59(1), 10–12 (1991).
[CrossRef]

S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997).
[CrossRef]

J. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett. 89(26), 261106 (2006).
[CrossRef]

Electron. Lett. (1)

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

IEEE J. Quantum Electron. (7)

J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

M. Osiński and J. Buus, “Linewidth Broadening Factor in Semiconductor Lasers – An Overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 μm Region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking Range and Stability of Injection Locked 1.54 μm InGaAsP Semiconductor Lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Liu, X. Jin, and S. L. Chuang, “Measurement of Linewidth Enhancement Factor of Semiconductor Lasers Using an Injection-Locking Technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94(3), 1983–1989 (2003).
[CrossRef]

Other (1)

R. Dingle, and C. H. Henry, U.S. Patent 3,983,302 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Optical spectrum of a free running QD F-P laser biased at 45 mA (5 arrows indicate measurement points for LEF), (b) Optical spectra of QD F-P laser before and after injection locking, (c) wide span optical spectrum of injection locked QD F-P laser, (d) ~ (h) injection locking bandwidth with different lasing spectral points, and (i) LEF as function of wavelength.

Fig. 2
Fig. 2

(a) Optical spectra and (b) autocorrelation FWHM and linear chirp with respect to five different lasing spectral points.

Metrics