Abstract

Geometry dependence of surface plasmon resonance of 2D metallic photonic crystals (PCs) was assessed using rigorous 3D finite difference time domain analysis. PCs of noble metallic rectangular and cylindrical nanopillars in square and triangular lattices on thick noble metal film were simulated for maximum field enhancement. It was found that the period, size and thickness of the nanopillars can be tuned to excite of surface plasmons at desired wavelengths in visible and near-infrared ranges. Maximum electric field enhancement near the nanopillars was found to be greater than 10X. The detail analysis of PCs tuned for 750 nm wavelength showed that thickness of nanopillars was the most sensitive parameter for field enhancement, and triangular lattice PCs had the wider enhancement bandwidth than square lattice PCs. Results showed that these PCs are sensitive with incident angle (θ) but not with polarization angle (ϕ).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmon on smooth and rough surface and on grating (Spinger-Verlag, Berlin Heidelberg, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and application, (Springer, New York, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  5. S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).
  6. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [CrossRef] [PubMed]
  7. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
    [CrossRef] [PubMed]
  8. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 153110 (2008).
    [CrossRef]
  9. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
    [CrossRef] [PubMed]
  10. M. Kretschmann, “Phase diagrams of surface plasmon polaritons crystals,” Phys. Rev. B 68(12), 125419 (2003).
    [CrossRef]
  11. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
    [CrossRef] [PubMed]
  12. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  13. T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polaritons band-gap structures,” Phys. Rev. B 71(12), 125429 (2005).
    [CrossRef]
  14. A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22(9), 2027 (2005).
    [CrossRef]
  15. J. D. Jackson, Classical Electrodynamics, (Wiley India, 1999).
  16. L. O. M. Rayleigh, “On Dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
    [CrossRef]
  17. D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. A 68(4), 490–495 (1978).
    [CrossRef]
  18. D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in optics, Vol. xxi, E. Wolf ed. (1984).
  19. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
    [CrossRef]
  20. K. Yusuura and H. Ikuno, “Improved point matching method with application to scattering from periodic surface,” IEEE Trans. Antennas Propag. AP 21(5), 657–662 (1973).
    [CrossRef]
  21. T. Matsuda, D. Zhou, and Y. Okuno, “Numerical analysis of plasmon-resonance absorption in bisinusoidal metal gratings,” J. Opt. Soc. Am. A 19(4), 695–701 (2002).
    [CrossRef]
  22. T. K. Gaylord, and M. G. Maharam, “Analysis and Application of Optical Diffraction by Gratings,” in Proceedings of IEEE Conference (1985) 73(5), pp. 894–937.
  23. A. Benabbas, V. Halté, and J.-Y. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13(22), 8730–8745 (2005).
    [CrossRef] [PubMed]
  24. M. Paulus and O. J. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066615 (2001).
    [CrossRef] [PubMed]
  25. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface:An analytical study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 045422 (2004).
  26. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1498 (1994).
    [CrossRef]
  27. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of arrays structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
    [CrossRef]
  28. R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
    [CrossRef]
  29. Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19(9), 511–514 (1967).
    [CrossRef]
  30. P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmons polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79(19), 3035–3037 (2001).
    [CrossRef]
  31. http://www.emexplorer.net
  32. D. W. Lynch and W. R. Hunter, “Comments on the Optical Constants of Metals and an Introduction to the Data for Several metals” Handbook of Optical constant of Solid, E. D. Palik ed., (Academic press, New York 1985).
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: Finite-Difference Time-Domain Method, (Artech House, 1995).
  34. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
    [CrossRef]
  35. R. Ruppin, “Plasmon frequencies of cube shaped metal clusters,” Z. Phys. D 36(1), 69–71 (1996).
    [CrossRef]
  36. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6(3), 122–124 (1981).
    [CrossRef] [PubMed]
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, New York, 1983).
  38. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, (Princeton University Press 2008).
  39. MEEP, FDTD package, http://ab-initio.mit.edu/wiki/index.php/Meep

2008 (4)

2007 (1)

S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).

2005 (4)

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polaritons band-gap structures,” Phys. Rev. B 71(12), 125429 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22(9), 2027 (2005).
[CrossRef]

A. Benabbas, V. Halté, and J.-Y. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13(22), 8730–8745 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface:An analytical study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 045422 (2004).

2003 (3)

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of arrays structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

M. Kretschmann, “Phase diagrams of surface plasmon polaritons crystals,” Phys. Rev. B 68(12), 125419 (2003).
[CrossRef]

2002 (1)

2001 (4)

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmons polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79(19), 3035–3037 (2001).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
[CrossRef]

M. Paulus and O. J. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066615 (2001).
[CrossRef] [PubMed]

1996 (2)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

R. Ruppin, “Plasmon frequencies of cube shaped metal clusters,” Z. Phys. D 36(1), 69–71 (1996).
[CrossRef]

1994 (1)

1982 (1)

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

1981 (1)

1978 (1)

D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. A 68(4), 490–495 (1978).
[CrossRef]

1975 (1)

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
[CrossRef]

1973 (1)

K. Yusuura and H. Ikuno, “Improved point matching method with application to scattering from periodic surface,” IEEE Trans. Antennas Propag. AP 21(5), 657–662 (1973).
[CrossRef]

1967 (1)

Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19(9), 511–514 (1967).
[CrossRef]

1907 (1)

L. O. M. Rayleigh, “On Dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmons polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79(19), 3035–3037 (2001).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Bedeaux, D.

R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
[CrossRef]

Benabbas, A.

Bigot, J.-Y.

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22(9), 2027 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polaritons band-gap structures,” Phys. Rev. B 71(12), 125429 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface:An analytical study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 045422 (2004).

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Catchpole, K. R.

S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).

Cheung, H. W.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Draine, B. T.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Flatau, P. J.

Ford, G. W.

Fuchs, R.

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
[CrossRef]

Green, M. A.

S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 153110 (2008).
[CrossRef]

Halté, V.

Hong, M. H.

Hor, T. S. A.

Hori, H.

Huang, Z. Q.

Hvam, J. M.

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22(9), 2027 (2005).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Ikuno, H.

K. Yusuura and H. Ikuno, “Improved point matching method with application to scattering from periodic surface,” IEEE Trans. Antennas Propag. AP 21(5), 657–662 (1973).
[CrossRef]

Jupille, J.

R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 153110 (2008).
[CrossRef]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Kelly, K. L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of arrays structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Kintaka, K.

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Kiyosue, K.

Kretschmann, M.

M. Kretschmann, “Phase diagrams of surface plasmon polaritons crystals,” Phys. Rev. B 68(12), 125419 (2003).
[CrossRef]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Lazzari, R.

R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
[CrossRef]

Leosson, K.

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22(9), 2027 (2005).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Liu, C. H.

Martin, O. J.

M. Paulus and O. J. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066615 (2001).
[CrossRef] [PubMed]

Matsuda, T.

Maystre, D.

D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. A 68(4), 490–495 (1978).
[CrossRef]

Nikolajsen, T.

Nishii, J.

Okuno, Y.

Paulus, M.

M. Paulus and O. J. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066615 (2001).
[CrossRef] [PubMed]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 153110 (2008).
[CrossRef]

Phillai, S.

S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).

Rayleigh, L. O. M.

L. O. M. Rayleigh, “On Dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Ruppin, R.

R. Ruppin, “Plasmon frequencies of cube shaped metal clusters,” Z. Phys. D 36(1), 69–71 (1996).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Schatz, G. C.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of arrays structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

Simonsen, I.

R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
[CrossRef]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polaritons band-gap structures,” Phys. Rev. B 71(12), 125429 (2005).
[CrossRef]

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22(9), 2027 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface:An analytical study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 045422 (2004).

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

Stern, E. A.

Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19(9), 511–514 (1967).
[CrossRef]

Tan, L. S.

Tatsu, Y.

Tawa, K.

Teng, Y.

Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19(9), 511–514 (1967).
[CrossRef]

Trupke, T.

S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).

Vlieger, J.

R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
[CrossRef]

Weber, W. H.

Worthing, P. T.

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmons polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79(19), 3035–3037 (2001).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Yusuura, K.

K. Yusuura and H. Ikuno, “Improved point matching method with application to scattering from periodic surface,” IEEE Trans. Antennas Propag. AP 21(5), 657–662 (1973).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 153110 (2008).
[CrossRef]

Zhang, F.

Zhao, L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of arrays structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Zhou, D.

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 153110 (2008).
[CrossRef]

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmons polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79(19), 3035–3037 (2001).
[CrossRef]

Eur. Phys. J. B (1)

R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001).
[CrossRef]

IEEE Trans. Antennas Propag. AP (1)

K. Yusuura and H. Ikuno, “Improved point matching method with application to scattering from periodic surface,” IEEE Trans. Antennas Propag. AP 21(5), 657–662 (1973).
[CrossRef]

J. Appl. Phys. (1)

S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of arrays structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Nano Lett. (1)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
[CrossRef]

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

M. Kretschmann, “Phase diagrams of surface plasmon polaritons crystals,” Phys. Rev. B 68(12), 125419 (2003).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polaritons band-gap structures,” Phys. Rev. B 71(12), 125429 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. Paulus and O. J. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066615 (2001).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface:An analytical study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 045422 (2004).

Phys. Rev. Lett. (3)

Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19(9), 511–514 (1967).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

L. O. M. Rayleigh, “On Dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Z. Phys. D (1)

R. Ruppin, “Plasmon frequencies of cube shaped metal clusters,” Z. Phys. D 36(1), 69–71 (1996).
[CrossRef]

Other (11)

http://www.emexplorer.net

D. W. Lynch and W. R. Hunter, “Comments on the Optical Constants of Metals and an Introduction to the Data for Several metals” Handbook of Optical constant of Solid, E. D. Palik ed., (Academic press, New York 1985).

A. Taflove and S. C. Hagness, Computational Electrodynamics: Finite-Difference Time-Domain Method, (Artech House, 1995).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, New York, 1983).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, (Princeton University Press 2008).

MEEP, FDTD package, http://ab-initio.mit.edu/wiki/index.php/Meep

D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in optics, Vol. xxi, E. Wolf ed. (1984).

T. K. Gaylord, and M. G. Maharam, “Analysis and Application of Optical Diffraction by Gratings,” in Proceedings of IEEE Conference (1985) 73(5), pp. 894–937.

J. D. Jackson, Classical Electrodynamics, (Wiley India, 1999).

H. Raether, Surface Plasmon on smooth and rough surface and on grating (Spinger-Verlag, Berlin Heidelberg, 1988).

S. A. Maier, Plasmonics: Fundamentals and application, (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

2D photonic crystals in square lattice with period λg , diameter d (side-length l in rectangular) and thickness t. (a) cylindrical nanopillars, (b) rectangular nanopillars

Fig. 2
Fig. 2

Reflectance from silver PCs of cylindrical nanopillars in square lattice at λ o = 750 nm illuminated perpendicularly by x-polarized plane wave.

Fig. 6
Fig. 6

Electric field components in silver PC of cylindrical nanopillars in square lattice of λg = 450 nm, d = 210 nm and t = 50 nm (a) Ez component in XY plane, (b) Ex component in XY plane and (c) Ex component when the nanocylinder are imbedded only in dielectric without metal sheet.

Fig. 3
Fig. 3

Reflectance from silver PCs of cylindrical nanopillars in triangular lattice at λo = 750 nm illuminated perpendicularly by x-polarized of plane wave.

Fig. 7
Fig. 7

(a) Reflectance versus wavelength of silver PCs. A: cylindrical nanopillar of λg = 450 nm, d = 210 nm and t = 50 nm in square lattice, B: cylindrical nanopillar of λg = 480 nm, d = 210 nm and t = 60 nm in triangular lattice and C: rectangular nanopillar of λg = 480 nm, l = 150 nm and t = 50 nm in square lattice. (b) Reflectance versus dimensions of PC A.

Fig. 4
Fig. 4

Reflectance from rectangular-shaped silver PC in square lattice at λo = 750 nm illuminated perpendicularly by x-polarized plane wave.

Fig. 5
Fig. 5

Ez components of rectangular silver PCs in XZ plane crossing through the nanopillar (right image of each pair) and crossing between the nanopillars (left image of each pair), (a) nm λg = 480 nm, l = 160 nm and t = 40 nm, (b) λg = 460 nm, l = 200 and t = 40 nm, illuminated perpendicularly by λo = 750 nm x-polarized plane wave.

Fig. 8
Fig. 8

(a) Reflectance versus incident angle curves of PCs A and B for ϕ = 0°. Continuous lines represent the reflectance of p-polarization (Rp) and broken lines represent the reflectance of s-polarization (Rs). (b) Reflectance versus polarization angle (ϕ) curves of PCs A and B for incident angle θ = 0°. (c) Ez field of two resonance modes at time period t = 0 and t = T/2 and reflectance angles (i) θ = 0° and (ii) θ = 40°.

Fig. 9
Fig. 9

Enhancement of Ez component of field excited by λo = 980 nm, p-polarized electric field on λg = 620 nm, d = 310 nm and t = 70 nm gold PC of cylindrical nanopillar in square lattice simulated by (a) Meep and (b) EM explorer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β = k o ε d ε m ε d + ε m
β = k | | + 2 π n   λ g x ^ + 2 π m λ g y ^
E S P 2 = 2 cos θ ε m 2 ( 1 R ) ε d ε m " ε m ' ε d
α = 4 π a 2 b 3 ε m ε d ε d + L [ ε m ε d ]
L = a 2 b 2 { a 2 π 2 a 2 arctan ( b a 2 b 2 ) b a 2 b 2 a 2 ( a 2 b 2 ) 3 / 2 }

Metrics