Abstract

This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
    [CrossRef]
  2. R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996).
    [CrossRef]
  3. R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
    [CrossRef]
  4. U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
    [CrossRef]
  5. S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
    [CrossRef]
  6. S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
    [CrossRef]
  7. A. J. Lowery and P. C. R. Gurney, “Comparison of Optical Processing Techniques for Optical Microwave Signal Generation,” IEEE Trans. Microw. Theory Tech. 46(2), 142–150 (1998).
    [CrossRef]
  8. A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  9. X. J. Meng and J. Menders, “Optical generation of microwave signals using SSB-based frequency-doubling scheme,” Electron. Lett. 39(1), 103–105 (2003).
    [CrossRef]
  10. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
    [CrossRef]
  11. A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33–40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10(9), 1304–1306 (1998).
    [CrossRef]
  12. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
    [CrossRef]
  13. W. Liang, A. Yariv, A. Kewitsch, and G. Rakuljic, “Coherent combining of the output of two semiconductor lasers using optical phase-lock loops,” Opt. Lett. 32(4), 370–372 (2007).
    [CrossRef] [PubMed]
  14. K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron. 18(10), 1669–1674 (1982).
    [CrossRef]
  15. Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
    [CrossRef]
  16. C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
    [CrossRef]
  17. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
    [CrossRef]
  18. Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
    [CrossRef]
  19. F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
    [CrossRef]
  20. I. G. Insua and C. G. Schäffer, “Optical microwave signal generation using a fiber loop,” J. Lightwave Technol. 25(11), 3341–3349 (2007).
    [CrossRef]
  21. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. Huignard, and A. Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave Signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
    [CrossRef]
  22. S. L. Pan and J. P. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express 17(14), 12167–12173 (2009).
    [CrossRef] [PubMed]
  23. J. Huang, C. Z. Sun, B. Xiong, and Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009).
    [CrossRef] [PubMed]
  24. T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48(21), 1413–1415 (1986).
    [CrossRef]
  25. R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
    [CrossRef]
  26. L. D. Westbrook and D. G. Moodie, “Simultaneous bi-directional analogue fibre-optic transmission using an electroabsorption modulator,” Electron. Lett. 32(19), 1806–1807 (1996).
    [CrossRef]
  27. D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
    [CrossRef]
  28. N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
    [CrossRef]
  29. S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
    [CrossRef]
  30. N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
    [CrossRef]

2009 (3)

2008 (1)

2007 (3)

I. G. Insua and C. G. Schäffer, “Optical microwave signal generation using a fiber loop,” J. Lightwave Technol. 25(11), 3341–3349 (2007).
[CrossRef]

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

W. Liang, A. Yariv, A. Kewitsch, and G. Rakuljic, “Coherent combining of the output of two semiconductor lasers using optical phase-lock loops,” Opt. Lett. 32(4), 370–372 (2007).
[CrossRef] [PubMed]

2006 (5)

A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

2004 (1)

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

2003 (1)

X. J. Meng and J. Menders, “Optical generation of microwave signals using SSB-based frequency-doubling scheme,” Electron. Lett. 39(1), 103–105 (2003).
[CrossRef]

2002 (1)

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

2000 (1)

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

1999 (2)

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

1998 (4)

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33–40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10(9), 1304–1306 (1998).
[CrossRef]

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[CrossRef]

A. J. Lowery and P. C. R. Gurney, “Comparison of Optical Processing Techniques for Optical Microwave Signal Generation,” IEEE Trans. Microw. Theory Tech. 46(2), 142–150 (1998).
[CrossRef]

1996 (4)

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996).
[CrossRef]

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

L. D. Westbrook and D. G. Moodie, “Simultaneous bi-directional analogue fibre-optic transmission using an electroabsorption modulator,” Electron. Lett. 32(19), 1806–1807 (1996).
[CrossRef]

1989 (1)

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

1986 (1)

T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48(21), 1413–1415 (1986).
[CrossRef]

1982 (2)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron. 18(10), 1669–1674 (1982).
[CrossRef]

Ahmed, Z.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

Alquie, G.

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
[CrossRef]

Bauer, S.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Benlarbi-Dela, A.

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
[CrossRef]

Blanc, S.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Braun, R.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Braun, R. P.

R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996).
[CrossRef]

Bretenaker, F.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. Huignard, and A. Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave Signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Brisset, J.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Brox, O.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Brunel, M.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. Huignard, and A. Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave Signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Chang, W. S. C.

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

Chazelas, J.

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Chen, X. F.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

Compton, R. C.

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33–40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10(9), 1304–1306 (1998).
[CrossRef]

Crozatier, V.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Dai, Y. T.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

Davidson, A. C.

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33–40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10(9), 1304–1306 (1998).
[CrossRef]

De La Rue, R. M.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

Dolfi, D.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. Huignard, and A. Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave Signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Edge, C.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

Elkin, M. D.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

Faci, S.

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
[CrossRef]

Floch, A.

Formont, S.

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Gliese, U.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[CrossRef]

Grosskopf, G.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996).
[CrossRef]

Gurney, P. C. R.

A. J. Lowery and P. C. R. Gurney, “Comparison of Optical Processing Techniques for Optical Microwave Signal Generation,” IEEE Trans. Microw. Theory Tech. 46(2), 142–150 (1998).
[CrossRef]

Heidrich, H.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Helmolt, C.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Hou, G. H.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

Huang, H. P.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Huang, J.

Huang, X.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

Huignard, J.

Huignard, J.-P.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Insua, I. G.

Iwashita, K.

K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron. 18(10), 1669–1674 (1982).
[CrossRef]

Kaiser, R.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Kawanishi, S.

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

Kewitsch, A.

Kim, D. Y.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

Kr¨uger, K.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Kreissl, J.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Krüger, U.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

Langley, L. N.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

Laperle, C.

C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Li, G. L.

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

Liang, W.

Liu, H. F.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

Liu, Y.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

Liu, Y. Z.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

Loi, K. K.

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

Lowery, A. J.

A. J. Lowery and P. C. R. Gurney, “Comparison of Optical Processing Techniques for Optical Microwave Signal Generation,” IEEE Trans. Microw. Theory Tech. 46(2), 142–150 (1998).
[CrossRef]

Luo, Y.

Menders, J.

X. J. Meng and J. Menders, “Optical generation of microwave signals using SSB-based frequency-doubling scheme,” Electron. Lett. 39(1), 103–105 (2003).
[CrossRef]

Meng, X. J.

X. J. Meng and J. Menders, “Optical generation of microwave signals using SSB-based frequency-doubling scheme,” Electron. Lett. 39(1), 103–105 (2003).
[CrossRef]

Merlet, T.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Monsterleet, A.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Moodie, D. G.

L. D. Westbrook and D. G. Moodie, “Simultaneous bi-directional analogue fibre-optic transmission using an electroabsorption modulator,” Electron. Lett. 32(19), 1806–1807 (1996).
[CrossRef]

Morvan, L.

Nakagawa, K.

K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron. 18(10), 1669–1674 (1982).
[CrossRef]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[CrossRef]

Nørskov, S.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[CrossRef]

Novak, D.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

Ogawa, Y.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

Pan, S. L.

Pappert, S. A.

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

Pelusi, M. D.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

Pillet, G.

Poezevara, A.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Poirier, M.

C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Pozzi, F.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

Rakuljic, G.

Rohde, D.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Rohde, R.

R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996).
[CrossRef]

Sahin, G.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

San, H. S.

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Sartorius, B.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Saruwatari, M.

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

Schäffer, C. G.

Schmidt, F.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996).
[CrossRef]

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

Shin, D. S.

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

Sorel, M.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

Stenzel, R.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Stubkjær, K. E.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[CrossRef]

Sun, C. K.

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

Sun, C. Z.

Svilans, M.

C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Tetu, M.

C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Tripon-Canseliet, C.

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
[CrossRef]

Trommer, D.

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

Vallet, M.

Wale, M. J.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

Wang, W.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Welstand, R. B.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

Wen, J. M.

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Westbrook, L. D.

L. D. Westbrook and D. G. Moodie, “Simultaneous bi-directional analogue fibre-optic transmission using an electroabsorption modulator,” Electron. Lett. 32(19), 1806–1807 (1996).
[CrossRef]

Williams, K. J.

Wise, F. W.

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33–40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10(9), 1304–1306 (1998).
[CrossRef]

Wood, T. H.

T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48(21), 1413–1415 (1986).
[CrossRef]

Xie, S. Z.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

Xiong, B.

Xu, G. Z.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

Yao, J. P.

Yao, Y.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

Yariv, A.

Yu, P. K. L.

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

Zhang, T.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

Zhao, L. J.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Zhu, H. L.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

Zhu, J. T.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

Zhu, N. H.

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48(21), 1413–1415 (1986).
[CrossRef]

Electron. Lett. (4)

L. D. Westbrook and D. G. Moodie, “Simultaneous bi-directional analogue fibre-optic transmission using an electroabsorption modulator,” Electron. Lett. 32(19), 1806–1807 (1996).
[CrossRef]

X. J. Meng and J. Menders, “Optical generation of microwave signals using SSB-based frequency-doubling scheme,” Electron. Lett. 39(1), 103–105 (2003).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996).
[CrossRef]

IEEE J. Quantum Electron. (4)

K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron. 18(10), 1669–1674 (1982).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007).
[CrossRef]

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996).
[CrossRef]

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33–40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10(9), 1304–1306 (1998).
[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000).
[CrossRef]

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (6)

A. J. Lowery and P. C. R. Gurney, “Comparison of Optical Processing Techniques for Optical Microwave Signal Generation,” IEEE Trans. Microw. Theory Tech. 46(2), 142–150 (1998).
[CrossRef]

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
[CrossRef]

C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998).
[CrossRef]

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Microw. Opt. Technol. Lett. (1)

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for microwave signal generation using an EML under external optical injection at the wavelength of λ1. The experimental setup using two external tunable lasers would be used in Section 3.

Fig. 2
Fig. 2

(a) Cross-section structure diagram of the EML. (b) Measured spectrum of the microwave signal generated in the EAM. (c) Measured spectrum of the beat signal in the high-speed photodetector. The wavelength of the tunable laser was tuned to be about 7.5GHz higher than that of the DFB laser.

Fig. 3
Fig. 3

Measured spectra similar to Fig. 2, but the measurements are made at different injection wavelengths with a step of 2.5 GHz.

Fig. 4
Fig. 4

Same as Fig. 3, but the wavelength of the narrow-linewidth tunable laser was tuned to be lower than that of the DFB laser.

Fig. 5
Fig. 5

Measured magnitudes of the beat signal between the lightwaves from the DFB laser and a narrow-linewidth tunable laser at different injection optical powers.

Fig. 6
Fig. 6

Measured magnitudes of the beat signal between the lightwaves from the DFB laser and the tunable laser at different injection wavelengths (closed circle). Opened circle indicates the results when the DFB laser beam is replaced by the light beam from another tunable laser. The frequency response (solid line) measured by microwave network analyzer is also plotted in the figure for comparison.

Fig. 7
Fig. 7

Measured optical spectra at different injection wavelengths..

Fig. 8
Fig. 8

Amplitudes of the microwave signals generated in (a) EAM and (b) photodetector when the EAM is biased at different voltages, where the parameter is the optical wavelength difference.

Fig. 9
Fig. 9

Measured spectra of the microwave signals generated in the modulator reversely biased at different voltages, where the bias current of the DFB laser and the injection optical wavelength are kept unchanged.

Fig. 10
Fig. 10

Experimental setup for microwave signal generation using an EA modulator integrated in between two DFB lasers.

Fig. 11
Fig. 11

(a) Optical spectrum and (b) corresponding electrical spectrum (dashed line). The electrical spectrum after adjusting the bias current of the DFB laser 2 is also included.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P M i c r o w a v e = 1 4 ( m P o p t R ) 2 R d

Metrics