Abstract

We present a new method for data acquisition in time-resolved terahertz spectroscopy experiments. Our approach is based on simultaneous collection of reference and differential THz scans. Both the optical THz generation beam and the pump beam are modulated at two different frequencies that are not harmonic with respect to each other. Our method allows not only twice as fast data acquisition but also minimization of noise connected to slowly varying laser power fluctuations and timing instabilities. Our use of the nonlinear crystal N-benzyl-2-methyl-4-nitroaniline (BNA) enables time-resolved THz spectroscopy to beyond 5 THz, thereby highlighting that the presented method is especially valuable at higher frequencies where phase errors in the data acquisition become increasingly important.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pumpterahertz-probe experiments,” Appl. Phys. Lett. 78, 3478 ( 2001).
    [CrossRef]
  2. D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
    [CrossRef]
  3. D. G. Cooke and P. Uhd Jepsen, “Time-resolved THz spectroscopy in a parallel plate waveguide,” Phys. Status Solidi A 206, 997, ( 2009).
    [CrossRef]
  4. C. A. Schmuttenmaer, “Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy,” Chem. Rev. 104, 1759 ( 2004).
    [CrossRef] [PubMed]
  5. B. Ferguson and X. -C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26 ( 2002).
    [CrossRef]
  6. Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945 ( 1998).
    [CrossRef]
  7. H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
    [CrossRef]
  8. K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
    [CrossRef]
  9. M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
    [CrossRef]
  10. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784 ( 1997).
    [CrossRef]
  11. G.L. Dakovski, B. Kubera, S. Lan, and J. Shan, “Finite pump-beam-size effects in optical pump-terahertz probe spectroscopy,” J. Opt. Soc. Am. B 23, 139 ( 2006).
    [CrossRef]
  12. M. S. Tyagi and R. Van Overstraeten, “Minority carrier recombination in heavily-doped silicon,” Solid State Electronics 26, 557 ( 1983).
    [CrossRef]
  13. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90, 5915 ( 2001).
    [CrossRef]
  14. S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
    [CrossRef]
  15. J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
    [CrossRef] [PubMed]
  16. M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B. 62, 15764 ( 2000).
    [CrossRef]
  17. M. Schall and P. Uhd Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett. 25, 13 ( 2000).
    [CrossRef]
  18. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 ( 1983).
    [CrossRef]
  19. F. A. Hegmann and K. P. H. Lui, “Optical pump-terahertz probe investigation of carrier relaxation in radiation-damaged silicon-on-sapphire,” Proc. of SPIE 4643, 31 ( 2002).
    [CrossRef]

2009 (2)

D. G. Cooke and P. Uhd Jepsen, “Time-resolved THz spectroscopy in a parallel plate waveguide,” Phys. Status Solidi A 206, 997, ( 2009).
[CrossRef]

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

2007 (1)

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

2006 (3)

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

G.L. Dakovski, B. Kubera, S. Lan, and J. Shan, “Finite pump-beam-size effects in optical pump-terahertz probe spectroscopy,” J. Opt. Soc. Am. B 23, 139 ( 2006).
[CrossRef]

2004 (1)

C. A. Schmuttenmaer, “Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy,” Chem. Rev. 104, 1759 ( 2004).
[CrossRef] [PubMed]

2002 (3)

B. Ferguson and X. -C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26 ( 2002).
[CrossRef]

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

F. A. Hegmann and K. P. H. Lui, “Optical pump-terahertz probe investigation of carrier relaxation in radiation-damaged silicon-on-sapphire,” Proc. of SPIE 4643, 31 ( 2002).
[CrossRef]

2001 (3)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90, 5915 ( 2001).
[CrossRef]

H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
[CrossRef]

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pumpterahertz-probe experiments,” Appl. Phys. Lett. 78, 3478 ( 2001).
[CrossRef]

2000 (2)

M. Schall and P. Uhd Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett. 25, 13 ( 2000).
[CrossRef]

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B. 62, 15764 ( 2000).
[CrossRef]

1998 (1)

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945 ( 1998).
[CrossRef]

1997 (1)

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784 ( 1997).
[CrossRef]

1983 (2)

M. S. Tyagi and R. Van Overstraeten, “Minority carrier recombination in heavily-doped silicon,” Solid State Electronics 26, 557 ( 1983).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 ( 1983).
[CrossRef]

Abbott, D.

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

Aoshima, S.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 ( 1983).
[CrossRef]

Beard, M.

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B. 62, 15764 ( 2000).
[CrossRef]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90, 5915 ( 2001).
[CrossRef]

Blood, M.

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

Cogdell, R. J.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

Cooke, D. G.

D. G. Cooke and P. Uhd Jepsen, “Time-resolved THz spectroscopy in a parallel plate waveguide,” Phys. Status Solidi A 206, 997, ( 2009).
[CrossRef]

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

Dakovski, G.L.

Ferguson, B.

B. Ferguson and X. -C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26 ( 2002).
[CrossRef]

Fujiwara, M.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

George, P. A.

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

Hashimoto, H.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
[CrossRef]

Hegmann, F. A.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

F. A. Hegmann and K. P. H. Lui, “Optical pump-terahertz probe investigation of carrier relaxation in radiation-damaged silicon-on-sapphire,” Proc. of SPIE 4643, 31 ( 2002).
[CrossRef]

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pumpterahertz-probe experiments,” Appl. Phys. Lett. 78, 3478 ( 2001).
[CrossRef]

Hryciw, A.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

Jiang, Z.

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945 ( 1998).
[CrossRef]

Kobayshi, T.

H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
[CrossRef]

Kubera, B.

Kuroyanagi, K.

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
[CrossRef]

Lan, S.

Lee, K.-S.

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

Levendorf, M.

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

Li, Q.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

Lu, T.-M.

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

Lui, K. P. H.

F. A. Hegmann and K. P. H. Lui, “Optical pump-terahertz probe investigation of carrier relaxation in radiation-damaged silicon-on-sapphire,” Proc. of SPIE 4643, 31 ( 2002).
[CrossRef]

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pumpterahertz-probe experiments,” Appl. Phys. Lett. 78, 3478 ( 2001).
[CrossRef]

MacDonald, A. N.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

Maruyama, M.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

Meldrum, A.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

Mickan, S. P.

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

Munch, J.

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

Park, J.

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

Rana, F.

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

Schall, M.

Schmuttenmaer, C.

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B. 62, 15764 ( 2000).
[CrossRef]

Schmuttenmaer, C. A.

C. A. Schmuttenmaer, “Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy,” Chem. Rev. 104, 1759 ( 2004).
[CrossRef] [PubMed]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90, 5915 ( 2001).
[CrossRef]

Shan, J.

Strait, J. H.

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 ( 1983).
[CrossRef]

Sugisaki, M.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

Takahashi, H.

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

Takahaski, H.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
[CrossRef]

Tsuchiya, Y.

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

Turner, G.

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B. 62, 15764 ( 2000).
[CrossRef]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90, 5915 ( 2001).
[CrossRef]

Tyagi, M. S.

M. S. Tyagi and R. Van Overstraeten, “Minority carrier recombination in heavily-doped silicon,” Solid State Electronics 26, 557 ( 1983).
[CrossRef]

Uhd Jepsen, P.

D. G. Cooke and P. Uhd Jepsen, “Time-resolved THz spectroscopy in a parallel plate waveguide,” Phys. Status Solidi A 206, 997, ( 2009).
[CrossRef]

M. Schall and P. Uhd Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett. 25, 13 ( 2000).
[CrossRef]

Van Overstraeten, R.

M. S. Tyagi and R. Van Overstraeten, “Minority carrier recombination in heavily-doped silicon,” Solid State Electronics 26, 557 ( 1983).
[CrossRef]

Wang, J.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784 ( 1997).
[CrossRef]

Yamada, T.

H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
[CrossRef]

Zhang, X. -C.

B. Ferguson and X. -C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26 ( 2002).
[CrossRef]

Zhang, X.-C.

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945 ( 1998).
[CrossRef]

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784 ( 1997).
[CrossRef]

Appl. Phys. Lett. (3)

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pumpterahertz-probe experiments,” Appl. Phys. Lett. 78, 3478 ( 2001).
[CrossRef]

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945 ( 1998).
[CrossRef]

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784 ( 1997).
[CrossRef]

Chem. Rev. (1)

C. A. Schmuttenmaer, “Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy,” Chem. Rev. 104, 1759 ( 2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90, 5915 ( 2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

H. Hashimoto, H. Takahaski, T. Yamada, K. Kuroyanagi, and T. Kobayshi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529 ( 2001).
[CrossRef]

Jpn. J. Appl. Phys. (2)

K. Kuroyanagi, M. Fujiwara, H. Hashimoto, H. Takahashi, S. Aoshima, and Y. Tsuchiya, “All Organic Terahertz Electromagnetic Wave Emission and Detection Using Highly Purified N-Benzyl-2-methyl-4-nitroaniline Crystals,” Jpn. J. Appl. Phys. 45, 4068 ( 2006).
[CrossRef]

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahaski, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-Tensor Components of a Single Crystal of N-Benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528 ( 2007).
[CrossRef]

Microelectr. J. (1)

S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectr. J. 33, 1033 ( 2002).
[CrossRef]

Nano Lett. (1)

J. H. Strait, P. A. George, M. Levendorf, M. Blood, F. Rana, and J. Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett. 9, 2967 ( 2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. -C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26 ( 2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 ( 1983).
[CrossRef]

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B 73, 193311 ( 2006).
[CrossRef]

Phys. Rev. B. (1)

M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B. 62, 15764 ( 2000).
[CrossRef]

Phys. Status Solidi A (1)

D. G. Cooke and P. Uhd Jepsen, “Time-resolved THz spectroscopy in a parallel plate waveguide,” Phys. Status Solidi A 206, 997, ( 2009).
[CrossRef]

Proc. of SPIE (1)

F. A. Hegmann and K. P. H. Lui, “Optical pump-terahertz probe investigation of carrier relaxation in radiation-damaged silicon-on-sapphire,” Proc. of SPIE 4643, 31 ( 2002).
[CrossRef]

Solid State Electronics (1)

M. S. Tyagi and R. Van Overstraeten, “Minority carrier recombination in heavily-doped silicon,” Solid State Electronics 26, 557 ( 1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the TRTS setup. (b) 2 frequency chopper blade. (c) time sequence of incoming pulses.

Fig. 2.
Fig. 2.

(a) The experimental waveform (points) of the voltage difference V 1-2 between the balanced detector photodiodes with an exponential decay fit (solid line) extended to later times to represent a typical shape of the voltage difference during experiments with the simultaneous data acquisition scheme. The decay constant for the voltage difference was found to be 1.02 ms. (b) The calculated values of the constant A as a function of photodiodes decay time τ under the assumption that voltage difference V 1-2 is composed of pure exponential decays.

Fig. 3.
Fig. 3.

(a) Measured E 1 and E 2 signals at the peak of THz pulse after 400 nm excitation of semi-insulating silicon in a 1D pump-probe experiment. (b) The recovered reference signal Eref =E 1+AE 2 (A=1.33) indicating a disordered response at the arrival of the pump.

Fig. 4.
Fig. 4.

Complex sheet conductivities Δσs σ s +iΔσ s of photoexcitated SI GaAs, 30 ps after 400 nm excitation at room temperature. Conductivity extracted by taking two separately and (d–f) simultaneously acquired reference and pump waveforms. The lines over the conductivity data are simultaneous Drude fits to Δσ s and Δσ s with scattering times given in the figures.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ref ( t ) = E 1 ( t ) + AE 2 ( t )
E pump ( t ) = E 1 ( t ) AE 2 ( t )
A = α 333 pump off α 333 pump on α 500 pump on .
Δ σ s ( ω ) = N + 1 Z 0 [ 1 T ( ω ) cos [ Φ ( ω ) ] 1 ]
Δ σ s ( ω ) = N + 1 Z 0 [ 1 T ( ω ) sin [ Φ ( ω ) ] ]
Δ σ s * ( ω ) = Δ σ s ( ω ) N + 1 Z 0 1 T ( ω ) Φ Δ Φ ,
Δ σ s * ( ω ) = Δ σ s ( ω ) N + 1 Z 0 1 T ( ω ) Δ Φ .

Metrics