S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 ( 2009).
[Crossref]
[PubMed]
C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 ( 2008).
[Crossref]
M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217(1), 14–20 ( 2008).
[Crossref]
[PubMed]
X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 ( 2008).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 ( 2006).
[Crossref]
[PubMed]
T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 ( 2006).
[Crossref]
[PubMed]
S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 ( 2006).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 ( 2006).
[Crossref]
[PubMed]
R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 ( 2006).
[Crossref]
K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” J. Acoust. Soc. Am. 117(5), 2705–2712 ( 2005).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 ( 2004).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 ( 2003).
[Crossref]
[PubMed]
M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 ( 2003).
[Crossref]
A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20(2), 333–341 ( 2003).
[Crossref]
Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. W. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 ( 2002).
[Crossref]
[PubMed]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
P. A. Edney and J. T. Walsh, “Acoustic modulation and photon-phonon scattering in optical coherence tomography,” Appl. Opt. 40(34), 6381–6388 ( 2001).
[Crossref]
[PubMed]
F. H. Silver, J. W. Freeman, and D. DeVore, “Viscoelastic properties of human skin and processed dermis,” Skin Res. Technol. 7(1), 18–23 ( 2001).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 ( 1998).
[Crossref]
[PubMed]
C. L. De Korte, A. F. W. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 ( 1998).
[Crossref]
[PubMed]
T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 ( 1998).
[PubMed]
L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 ( 1996).
[Crossref]
[PubMed]
E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien Jr, “Young’s modulus measurements of soft tissues with application to elastic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 191–194 ( 1996).
[Crossref]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 ( 1991).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
R. O. Potts, D. A. Chrisman, and E. M. Buras., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 ( 1983).
[Crossref]
[PubMed]
J. T. Whitton and J. D. Everall, “The thickness of the epidermis,” Br. J. Dermatol. 89(5), 467–476 ( 1973).
[Crossref]
[PubMed]
S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 ( 2009).
[Crossref]
[PubMed]
S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 ( 2009).
[Crossref]
[PubMed]
T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 ( 2006).
[Crossref]
[PubMed]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 ( 2009).
[Crossref]
[PubMed]
C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 ( 2008).
[Crossref]
X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 ( 2008).
[Crossref]
[PubMed]
H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 ( 2006).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 ( 2004).
[Crossref]
[PubMed]
R. O. Potts, D. A. Chrisman, and E. M. Buras., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 ( 1983).
[Crossref]
[PubMed]
J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 ( 1991).
[Crossref]
[PubMed]
C. L. De Korte, A. F. W. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 ( 1998).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien Jr, “Young’s modulus measurements of soft tissues with application to elastic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 191–194 ( 1996).
[Crossref]
R. O. Potts, D. A. Chrisman, and E. M. Buras., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 ( 1983).
[Crossref]
[PubMed]
C. L. De Korte, A. F. W. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 ( 1998).
[Crossref]
[PubMed]
F. H. Silver, J. W. Freeman, and D. DeVore, “Viscoelastic properties of human skin and processed dermis,” Skin Res. Technol. 7(1), 18–23 ( 2001).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 ( 2008).
[Crossref]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
J. T. Whitton and J. D. Everall, “The thickness of the epidermis,” Br. J. Dermatol. 89(5), 467–476 ( 1973).
[Crossref]
[PubMed]
J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 ( 2003).
[Crossref]
[PubMed]
M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 ( 2003).
[Crossref]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
F. H. Silver, J. W. Freeman, and D. DeVore, “Viscoelastic properties of human skin and processed dermis,” Skin Res. Technol. 7(1), 18–23 ( 2001).
[Crossref]
[PubMed]
J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 ( 2004).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 ( 2006).
[Crossref]
[PubMed]
L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 ( 1996).
[Crossref]
[PubMed]
T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 ( 1998).
[PubMed]
K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” J. Acoust. Soc. Am. 117(5), 2705–2712 ( 2005).
[Crossref]
[PubMed]
J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 ( 2003).
[Crossref]
[PubMed]
M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 ( 2003).
[Crossref]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 ( 1998).
[PubMed]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 ( 2006).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 ( 2003).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217(1), 14–20 ( 2008).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 ( 1998).
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 ( 2009).
[Crossref]
[PubMed]
E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien Jr, “Young’s modulus measurements of soft tissues with application to elastic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 191–194 ( 1996).
[Crossref]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 ( 2006).
[Crossref]
[PubMed]
R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 ( 2006).
[Crossref]
H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 ( 2006).
[Crossref]
[PubMed]
T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 ( 1998).
[PubMed]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 ( 2008).
[Crossref]
L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 ( 1996).
[Crossref]
[PubMed]
L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 ( 1996).
[Crossref]
[PubMed]
J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 ( 1991).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 ( 2006).
[Crossref]
C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 ( 2008).
[Crossref]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 ( 2003).
[Crossref]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 ( 2006).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217(1), 14–20 ( 2008).
[Crossref]
[PubMed]
C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 ( 2008).
[Crossref]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217(1), 14–20 ( 2008).
[Crossref]
[PubMed]
T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 ( 2006).
[Crossref]
[PubMed]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien Jr, “Young’s modulus measurements of soft tissues with application to elastic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 191–194 ( 1996).
[Crossref]
E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien Jr, “Young’s modulus measurements of soft tissues with application to elastic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 191–194 ( 1996).
[Crossref]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 ( 1991).
[Crossref]
[PubMed]
K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” J. Acoust. Soc. Am. 117(5), 2705–2712 ( 2005).
[Crossref]
[PubMed]
L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 ( 1996).
[Crossref]
[PubMed]
C. L. De Korte, A. F. W. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 ( 1998).
[Crossref]
[PubMed]
J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 ( 2004).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 ( 2006).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 ( 2006).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 ( 1991).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
R. O. Potts, D. A. Chrisman, and E. M. Buras., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 ( 1983).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 ( 2004).
[Crossref]
[PubMed]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” J. Acoust. Soc. Am. 117(5), 2705–2712 ( 2005).
[Crossref]
[PubMed]
S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 ( 2009).
[Crossref]
[PubMed]
A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20(2), 333–341 ( 2003).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
F. H. Silver, J. W. Freeman, and D. DeVore, “Viscoelastic properties of human skin and processed dermis,” Skin Res. Technol. 7(1), 18–23 ( 2001).
[Crossref]
[PubMed]
H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 ( 2006).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 ( 2006).
[Crossref]
[PubMed]
K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” J. Acoust. Soc. Am. 117(5), 2705–2712 ( 2005).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217(1), 14–20 ( 2008).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
C. L. De Korte, A. F. W. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 ( 1998).
[Crossref]
[PubMed]
R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 ( 2006).
[Crossref]
S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 ( 2006).
[Crossref]
[PubMed]
T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 ( 1998).
[PubMed]
J. T. Whitton and J. D. Everall, “The thickness of the epidermis,” Br. J. Dermatol. 89(5), 467–476 ( 1973).
[Crossref]
[PubMed]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 ( 1991).
[Crossref]
[PubMed]
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 ( 2002).
[PubMed]
J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 ( 2003).
[Crossref]
[PubMed]
R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 ( 2006).
[Crossref]
J. T. Whitton and J. D. Everall, “The thickness of the epidermis,” Br. J. Dermatol. 89(5), 467–476 ( 1973).
[Crossref]
[PubMed]
M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217(1), 14–20 ( 2008).
[Crossref]
[PubMed]
J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 ( 2004).
[Crossref]
[PubMed]
E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien Jr, “Young’s modulus measurements of soft tissues with application to elastic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 191–194 ( 1996).
[Crossref]
K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” J. Acoust. Soc. Am. 117(5), 2705–2712 ( 2005).
[Crossref]
[PubMed]
R. O. Potts, D. A. Chrisman, and E. M. Buras., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 ( 1983).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 ( 2006).
[Crossref]
[PubMed]
T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 ( 2006).
[Crossref]
[PubMed]
S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 ( 2003).
[Crossref]
A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 ( 2001).
[Crossref]
[PubMed]
R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 ( 2004).
[Crossref]
[PubMed]
S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 ( 2006).
[Crossref]
[PubMed]
X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 ( 2008).
[Crossref]
[PubMed]
J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 ( 1998).
[Crossref]
[PubMed]
Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. W. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 ( 2002).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 ( 1999).
[Crossref]
[PubMed]
C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 ( 2008).
[Crossref]
S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 ( 2009).
[Crossref]
[PubMed]
M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 ( 2003).
[Crossref]
A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 ( 2006).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 ( 1991).
[Crossref]
[PubMed]
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 ( 1995).
[Crossref]
[PubMed]
F. H. Silver, J. W. Freeman, and D. DeVore, “Viscoelastic properties of human skin and processed dermis,” Skin Res. Technol. 7(1), 18–23 ( 2001).
[Crossref]
[PubMed]
H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 ( 2006).
[Crossref]
[PubMed]
T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 ( 1998).
[PubMed]
J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 ( 1991).
[Crossref]
[PubMed]
C. L. De Korte, A. F. W. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 ( 1998).
[Crossref]
[PubMed]
L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 ( 1996).
[Crossref]
[PubMed]
D. D. Sampson, and T. R. Hillman, “Optical coherence tomography,” in Lasers And Current Optical Techniques In Biology, G. Palumbo and R. Pratesi, eds. (ESP Comprehensive Series in Photosciences, Cambridge, UK, 2004) pp. 481–571.
E. Udd, Fibre Optic Sensors: An Introduction for Engineers and Scientists (Wiley New York, 1991).