Abstract

We report the development of a fiber-based single spatial-mode source of photon-pairs where the efficiency of extracting photon-pairs is increased through the use of fiber-end expansion and Bragg filters. This improvement in efficiency enabled a spectrally bright and pure photon-pair source having a small second-order correlation function (0.03) and a raw spectral brightness of 44,700 pairs s-1nm-1mW-1. The source can be configured to generate entangled photon-pairs, characterized via optimal and minimal quantum state tomography, to have a fidelity of 97% and tangle of 92%, without subtracting any background.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
    [CrossRef]
  2. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  3. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007).
    [CrossRef] [PubMed]
  4. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, "Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks," Phys. Rev. Lett. 93, 093601 (2004).
    [CrossRef] [PubMed]
  5. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, "Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals," Opt. Express 15, 7479- 7488 (2007).
    [CrossRef] [PubMed]
  6. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, "A versatile waveguide source of photon pairs for chip-scale quantum information processing," Opt. Express 17, 6727-6740 (2009).
    [CrossRef] [PubMed]
  7. A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, "Spatial modes in waveguided parametric downconversion," arXiv:0904.4668v1 (2009).
  8. M. Karpinski, C. Radzewicz, and K. Banaszek, "Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO 4 waveguide," Appl. Phys. Lett. 94181105 (2009).
    [CrossRef]
  9. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Technol. Lett.983-985 (2002).
    [CrossRef]
  10. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005).
    [CrossRef] [PubMed]
  11. S. D. Dyer, B. Baek, and S. W. Nam, "High-brightness, low-noise, all-fiber photon pair source," Opt. Express 1710290-10297(2009).
    [CrossRef] [PubMed]
  12. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005).
    [CrossRef]
  13. H. Takesue and K. Inoue, "1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef] [PubMed]
  14. J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006).
    [CrossRef] [PubMed]
  15. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
    [CrossRef] [PubMed]
  16. P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  17. J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phy. Rev. A 76, 043836 (2007).
    [CrossRef]
  18. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008).
    [CrossRef]
  19. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120501 (2007).
    [CrossRef] [PubMed]
  20. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
    [CrossRef] [PubMed]
  21. J. Chen, X. Li, and P. Kumar, "Two-photon-state generation via four-wave mixing in optical fibers," Phys. Rev. A 72, 033801 (2005).
    [CrossRef]
  22. J. Fan and A. Migdall, "A broadband high spectral brightness fiber-based two-photon source," Opt. Express 15, 2915-2920 (2007).
    [CrossRef] [PubMed]
  23. http://www.nktphotonics.com, Crystal Fibre A/S has been merged into NKT Photonics.
  24. Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it necessarily imply that the products are the best available for the purpose.
  25. http://www.optigrate.com.
  26. I. Ciapurin, L. Glebov, V. Smirnov, "Practical Holography XIX:Materials and Applications. Eds: T. H. Jeong, H. Bjelkhagen", Proceedings of SPIE 5742, 183-194, (2005).
    [CrossRef]
  27. S. Jobling, K. T. McCusker, and P. G. Kwiat, "Adaptive Optics for Improved Mode-Coupling Efficiencies," in Poster JWA32, Frontiers in Optics (2008).
  28. R. Loudon, The Quantum Theory of Light (New York:Oxford University Press, 1983).
  29. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
    [CrossRef]
  30. http://www.nist.gov/fpga.
  31. J. Reháček, B.-G. Englert, and D. Kaszlikowski, "Minimal qubit tomography," Phys. Rev. A 70, 052321 (2004).
    [CrossRef]
  32. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, (6), 1651 (1995).
    [CrossRef]
  33. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part II," Opt. Eng. 34, (6), 1656 (1995).
    [CrossRef]
  34. E. Hecht, Optics, 4th Edition (Addison Wesley, 2002).
  35. A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006).
    [CrossRef]
  36. A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006).
    [CrossRef]
  37. J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
    [CrossRef]
  38. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
    [CrossRef] [PubMed]
  39. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008).
    [CrossRef] [PubMed]
  40. O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009).
    [CrossRef] [PubMed]
  41. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, "Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber," Opt. Express 15, 14870-14886 (2007).
    [CrossRef] [PubMed]
  42. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong,W. J. Wadsworth, and J. G. Rarity, "Nonclassical 2-photon interference with separated intrinsically narrowband fibre sources," Opt. Express 17, 4670-4676 (2009).
    [CrossRef] [PubMed]
  43. C. Soller, B. Brecht, P. J. Mosley, Z. Leyun, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, "Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source," arXiv:0908.2932 (2009).
  44. J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, "Efficient polarization squeezing in optical fibers," Opt. Lett. 30, 1192-1194 (2005).
    [CrossRef] [PubMed]
  45. J. Milanovic, M. Lassen, U. L. Andersen, and G. Leuchs, "A Novel Method for Polarization Squeezing with Photonic Crystal Fibers," arXiv:0902.4597v1 (2009).

2009 (5)

2008 (2)

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (4)

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006).
[CrossRef] [PubMed]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006).
[CrossRef]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006).
[CrossRef]

2005 (6)

2004 (3)

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, "Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

J. Reháček, B.-G. Englert, and D. Kaszlikowski, "Minimal qubit tomography," Phys. Rev. A 70, 052321 (2004).
[CrossRef]

2003 (1)

P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Technol. Lett.983-985 (2002).
[CrossRef]

2001 (1)

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

1998 (1)

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

1995 (2)

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, (6), 1651 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part II," Opt. Eng. 34, (6), 1656 (1995).
[CrossRef]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
[CrossRef] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Ambirajan, A.

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part II," Opt. Eng. 34, (6), 1656 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, (6), 1651 (1995).
[CrossRef]

Andersen, U. L.

Baek, B.

Baldi, P.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Banaszek, K.

M. Karpinski, C. Radzewicz, and K. Banaszek, "Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO 4 waveguide," Appl. Phys. Lett. 94181105 (2009).
[CrossRef]

Battle, P.

Beausoleil, R. G.

Beveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Bouwmeester, D.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

Cemlyn, B.

Chen, J.

Clark, A.

Cohen, O.

Duligall, J.

Dyer, S. D.

Eisaman, M. D.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phy. Rev. A 76, 043836 (2007).
[CrossRef]

Englert, B.-G.

J. Reháček, B.-G. Englert, and D. Kaszlikowski, "Minimal qubit tomography," Phys. Rev. A 70, 052321 (2004).
[CrossRef]

Fan, J.

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Fedrizzi, A.

Fiorentino, M.

Fulconis, J.

Garay-Palmett, K.

Gisin, N.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Goldschmidt, E. A.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008).
[CrossRef]

Halder, M.

Heersink, J.

Herbst, T.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Inoue, K.

Jennewein, T.

Josse, V.

Karpinski, M.

M. Karpinski, C. Radzewicz, and K. Banaszek, "Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO 4 waveguide," Appl. Phys. Lett. 94181105 (2009).
[CrossRef]

Kaszlikowski, D.

J. Reháček, B.-G. Englert, and D. Kaszlikowski, "Minimal qubit tomography," Phys. Rev. A 70, 052321 (2004).
[CrossRef]

Kumar, P.

J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

J. Chen, X. Li, and P. Kumar, "Two-photon-state generation via four-wave mixing in optical fibers," Phys. Rev. A 72, 033801 (2005).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Technol. Lett.983-985 (2002).
[CrossRef]

Kurtsiefer, C.

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006).
[CrossRef]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Lamas-Linares, A.

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006).
[CrossRef]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006).
[CrossRef]

Lee, K. F.

Leuchs, G.

Li, X.

Liang, C.

Ling, A.

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, "A versatile waveguide source of photon pairs for chip-scale quantum information processing," Opt. Express 17, 6727-6740 (2009).
[CrossRef] [PubMed]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006).
[CrossRef]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006).
[CrossRef]

Look, D. C.

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, (6), 1651 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part II," Opt. Eng. 34, (6), 1656 (1995).
[CrossRef]

Lundeen, J. S.

Lundeen, J.S.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

McGuinness, H. J.

Migdall, A.

Mosley, P. J.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Munro, M. W.

Nam, S. W.

O’Brien, J. L.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Pan, J.-W.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

Pearlman, A. J.

Polyakov, S. V.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008).
[CrossRef]

Poppe, A.

Puentes, G.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Radzewicz, C.

M. Karpinski, C. Radzewicz, and K. Banaszek, "Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO 4 waveguide," Appl. Phys. Lett. 94181105 (2009).
[CrossRef]

Rangel-Rojo, R.

Rarity, J. G.

Rehácek, J.

J. Reháček, B.-G. Englert, and D. Kaszlikowski, "Minimal qubit tomography," Phys. Rev. A 70, 052321 (2004).
[CrossRef]

Roberts, T. D.

Russell, P.

P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Technol. Lett.983-985 (2002).
[CrossRef]

Smith, B. J.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Soh, K. P.

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006).
[CrossRef]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006).
[CrossRef]

Spillane, S. M.

Takesue, H.

Tanzilli, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Voss, P. L.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Technol. Lett.983-985 (2002).
[CrossRef]

Wadsworth, W. J.

Walmsley, I. A.

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Wang, L. J.

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

Xiong, C.

Zbinden, H.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Zeilinger, A.

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007).
[CrossRef] [PubMed]

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

M. Karpinski, C. Radzewicz, and K. Banaszek, "Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO 4 waveguide," Appl. Phys. Lett. 94181105 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Technol. Lett.983-985 (2002).
[CrossRef]

J. Mod. Opt. (1)

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006).
[CrossRef]

New J. Phys. (1)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004).
[CrossRef]

Opt. Eng. (2)

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, (6), 1651 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part II," Opt. Eng. 34, (6), 1656 (1995).
[CrossRef]

Opt. Express (10)

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, "Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber," Opt. Express 15, 14870-14886 (2007).
[CrossRef] [PubMed]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong,W. J. Wadsworth, and J. G. Rarity, "Nonclassical 2-photon interference with separated intrinsically narrowband fibre sources," Opt. Express 17, 4670-4676 (2009).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
[CrossRef] [PubMed]

J. Fan and A. Migdall, "A broadband high spectral brightness fiber-based two-photon source," Opt. Express 15, 2915-2920 (2007).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005).
[CrossRef] [PubMed]

S. D. Dyer, B. Baek, and S. W. Nam, "High-brightness, low-noise, all-fiber photon pair source," Opt. Express 1710290-10297(2009).
[CrossRef] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, "Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals," Opt. Express 15, 7479- 7488 (2007).
[CrossRef] [PubMed]

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, "A versatile waveguide source of photon pairs for chip-scale quantum information processing," Opt. Express 17, 6727-6740 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phy. Rev. A (1)

J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phy. Rev. A 76, 043836 (2007).
[CrossRef]

Phys. Rev. A (5)

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

J. Chen, X. Li, and P. Kumar, "Two-photon-state generation via four-wave mixing in optical fibers," Phys. Rev. A 72, 033801 (2005).
[CrossRef]

A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006).
[CrossRef]

J. Reháček, B.-G. Englert, and D. Kaszlikowski, "Minimal qubit tomography," Phys. Rev. A 70, 052321 (2004).
[CrossRef]

Phys. Rev. Lett. (7)

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, "Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Science (1)

P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (11)

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, "Spatial modes in waveguided parametric downconversion," arXiv:0904.4668v1 (2009).

C. Soller, B. Brecht, P. J. Mosley, Z. Leyun, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, "Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source," arXiv:0908.2932 (2009).

E. Hecht, Optics, 4th Edition (Addison Wesley, 2002).

http://www.nist.gov/fpga.

http://www.nktphotonics.com, Crystal Fibre A/S has been merged into NKT Photonics.

Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it necessarily imply that the products are the best available for the purpose.

http://www.optigrate.com.

I. Ciapurin, L. Glebov, V. Smirnov, "Practical Holography XIX:Materials and Applications. Eds: T. H. Jeong, H. Bjelkhagen", Proceedings of SPIE 5742, 183-194, (2005).
[CrossRef]

S. Jobling, K. T. McCusker, and P. G. Kwiat, "Adaptive Optics for Improved Mode-Coupling Efficiencies," in Poster JWA32, Frontiers in Optics (2008).

R. Loudon, The Quantum Theory of Light (New York:Oxford University Press, 1983).

J. Milanovic, M. Lassen, U. L. Andersen, and G. Leuchs, "A Novel Method for Polarization Squeezing with Photonic Crystal Fibers," arXiv:0902.4597v1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Color online) Layout of first experiment for pumping a PCF and collecting photon-pairs. Photon-pairs are detected via a start-stop coincidence circuit. Reflection Bragg gratings separate signal and idler from the pump. Using two gratings per arm suppresses the pump light by up to 180 dB.

Fig. 2.
Fig. 2.

(Color online) Two measures of photon-pair purity: the coincidence-to-accidentals ratio (C/A) and g (2)(0). (a) Photon-pair purity dependence on the detected pair rate. (b) g (2)(0) versus raw spectral brightness. The inset indicates the detection arrangement for obtaining g (2)(0). The signal photon acts as a herald, while the idler photons are sent into a polarization neutral 50:50 beamsplitter. The rate of three-fold and two-fold coincidences determine the value of g (2)(0). In both (a) and (b) the x-axis was obtained by varying pump power, with higher power yielding higher pair rates and higher spectral brightness.

Fig. 3.
Fig. 3.

(Color online) Schematic of the polarization-entangled photon-pair source based on a 90° twist of the photonic-crystal fiber. The PCF is pumped in both directions. A single Bragg grating (BG) selects for each of the signal and idler; to suppress residual pump light highly transmissive (>99%) bandpass (BP) filters are used. The entangled state is analyzed using a combination of quarter-wave ( ( λ 4 ) ) and half-wave ( ( λ 2 ) ) plates together with a polarizing beam splitter (PBS).

Fig. 4.
Fig. 4.

(Color online) (a) Illustrates the concept of minimal and optimal tomography for an unknown Stokes vector. (b) A graphical representation of the density matrix obtained using minimal and optimal quantum state tomography. The real part of the matrix is on the left; the imaginary part is the right. The magnitude of the components of the imaginary part are less than 0.013. The fidelity to the Φ- Bell state is 97±1%.

Fig. 5.
Fig. 5.

(Color online) (a) Scheme for measurement of the Hong-Ou-Mandel Interference dip. The signal photons act as heralds for the idler photons. For interference to take place, the idler photons are set to H polarization. (b) The observed HOM dip at ≈ 1 mW of pump power in each arm of the PCF. When corrected for accidentals, the HOM dip is compatible with unit visibility.

Tables (2)

Tables Icon

Table 1. Extraction efficiencies for different PCF sources. Where possible we have provided the experimental uncertainties (1 standard deviation). The values for η f iber is taken by assuming 4% reflection loss at an uncoated glass surface. Efficiency (%)

Tables Icon

Table 2. Selected data points from Fig. 2(b) for comparing g (2)(0) values between different sources. Increasing the pump repetition rate, but keeping peak pulse power constant, it should be possible to increase the pair production rate while maintaining the level of g (2)(0).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( 0 ) = 4 C 123 C 1 ( C 12 + C 13 ) 2 ,

Metrics