Abstract

Microfabricated Lamellar grating interferometers (LGI) require fewer components compared to Michelson interferotemeters and offer compact and broadband Fourier transform spectrometers (FTS) with good spectral resolution, high speed and high efficiency. This study presents the fundamental equations that govern the performance and limitations of LGI based FTS systems. Simulations and experiments were conducted to demonstrate and explain the periodic nature of the interferogram envelope due to Talbot image formation. Simulations reveal that the grating period should be chosen large enough to avoid Talbot phase reversal at the expense of mixing of the diffraction orders at the detector. Optimal LGI grating period selection depends on a number of system parameters and requires compromises in spectral resolution and signal-to-bias ratio (SBR) of the interferogram within the spectral range of interest. New analytical equations are derived for spectral resolution and SBR of LGI based FTS systems.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Saptari, “Fourier-Transform Spectroscopy Instrumentation Engineering”, SPIE International Society for Optical Engineering, 2003.
  2. T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
    [CrossRef]
  3. J. Strong and G. A. Vanasse, “Lamellar grating far-infrared interferometer,” J. Opt. Soc. Am. 50(2Issue 2), 113 (1960).
    [CrossRef]
  4. O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29(13), 1437–1439 (2004).
    [CrossRef]
  5. C. Ataman, H. Urey, and A. Wolter, “MEMS-based Fourier Transform Spectrometer,” J. Micromechanics and Microengineering 16, 2516–2523 (2006).
  6. J. W. Goodman, Introduction to Fourier Optics, Roberts & Company Publishers, 2005.
  7. C. Ataman, H. Urey, “Compact Fourier Transform Spectrometers using FR4 Platform” SNA: A. Physical, A 151 (2009) 9–16.
  8. R. T. Hall, D. Vrabec, and J. M. Dowling, “A High-Resolution, Far Infrared Double-Beam Lamellar Grating Interferometer,” Appl. Opt. 5(7), (1966).
  9. R. L. Henry and D. B. Tanner, “A Lamellar Grating Interferometer for the Far-Infrared,” Infrared Phys. 19(2), 163–174 (1979).
    [CrossRef]
  10. F. Lee, G. Zhou, H. Yu, and F. S. Chau, “A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system,” Sens. Actuators A Phys. 149(2), 221–228 (2009).
    [CrossRef]

2009 (1)

F. Lee, G. Zhou, H. Yu, and F. S. Chau, “A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system,” Sens. Actuators A Phys. 149(2), 221–228 (2009).
[CrossRef]

2008 (1)

T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
[CrossRef]

2006 (1)

C. Ataman, H. Urey, and A. Wolter, “MEMS-based Fourier Transform Spectrometer,” J. Micromechanics and Microengineering 16, 2516–2523 (2006).

2004 (1)

1979 (1)

R. L. Henry and D. B. Tanner, “A Lamellar Grating Interferometer for the Far-Infrared,” Infrared Phys. 19(2), 163–174 (1979).
[CrossRef]

1966 (1)

R. T. Hall, D. Vrabec, and J. M. Dowling, “A High-Resolution, Far Infrared Double-Beam Lamellar Grating Interferometer,” Appl. Opt. 5(7), (1966).

1960 (1)

Ataman, C.

C. Ataman, H. Urey, and A. Wolter, “MEMS-based Fourier Transform Spectrometer,” J. Micromechanics and Microengineering 16, 2516–2523 (2006).

Chau, F. S.

F. Lee, G. Zhou, H. Yu, and F. S. Chau, “A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system,” Sens. Actuators A Phys. 149(2), 221–228 (2009).
[CrossRef]

De Rooij, N.

Dowling, J. M.

R. T. Hall, D. Vrabec, and J. M. Dowling, “A High-Resolution, Far Infrared Double-Beam Lamellar Grating Interferometer,” Appl. Opt. 5(7), (1966).

Drabe, C.

T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
[CrossRef]

Hall, R. T.

R. T. Hall, D. Vrabec, and J. M. Dowling, “A High-Resolution, Far Infrared Double-Beam Lamellar Grating Interferometer,” Appl. Opt. 5(7), (1966).

Henry, R. L.

R. L. Henry and D. B. Tanner, “A Lamellar Grating Interferometer for the Far-Infrared,” Infrared Phys. 19(2), 163–174 (1979).
[CrossRef]

Herzig, H. P.

Kenda, A.

T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
[CrossRef]

Lee, F.

F. Lee, G. Zhou, H. Yu, and F. S. Chau, “A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system,” Sens. Actuators A Phys. 149(2), 221–228 (2009).
[CrossRef]

Manzardo, O.

Michaely, R.

Noell, W.

Overstolz, T.

Sandner, T.

T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
[CrossRef]

Schädelin, F.

Schenk, H.

T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
[CrossRef]

Scherf, W.

T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
[CrossRef]

Strong, J.

Tanner, D. B.

R. L. Henry and D. B. Tanner, “A Lamellar Grating Interferometer for the Far-Infrared,” Infrared Phys. 19(2), 163–174 (1979).
[CrossRef]

Urey, H.

C. Ataman, H. Urey, and A. Wolter, “MEMS-based Fourier Transform Spectrometer,” J. Micromechanics and Microengineering 16, 2516–2523 (2006).

Vanasse, G. A.

Vrabec, D.

R. T. Hall, D. Vrabec, and J. M. Dowling, “A High-Resolution, Far Infrared Double-Beam Lamellar Grating Interferometer,” Appl. Opt. 5(7), (1966).

Wolter, A.

C. Ataman, H. Urey, and A. Wolter, “MEMS-based Fourier Transform Spectrometer,” J. Micromechanics and Microengineering 16, 2516–2523 (2006).

Yu, H.

F. Lee, G. Zhou, H. Yu, and F. S. Chau, “A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system,” Sens. Actuators A Phys. 149(2), 221–228 (2009).
[CrossRef]

Zhou, G.

F. Lee, G. Zhou, H. Yu, and F. S. Chau, “A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system,” Sens. Actuators A Phys. 149(2), 221–228 (2009).
[CrossRef]

Appl. Opt. (1)

R. T. Hall, D. Vrabec, and J. M. Dowling, “A High-Resolution, Far Infrared Double-Beam Lamellar Grating Interferometer,” Appl. Opt. 5(7), (1966).

Infrared Phys. (1)

R. L. Henry and D. B. Tanner, “A Lamellar Grating Interferometer for the Far-Infrared,” Infrared Phys. 19(2), 163–174 (1979).
[CrossRef]

J. Micromechanics and Microengineering (1)

C. Ataman, H. Urey, and A. Wolter, “MEMS-based Fourier Transform Spectrometer,” J. Micromechanics and Microengineering 16, 2516–2523 (2006).

J. Opt. Soc. Am. (1)

MEMS MOEMS (1)

T. Sandner, C. Drabe, H. Schenk, A. Kenda, and W. Scherf, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” MEMS MOEMS 7(2), 021006 (2008).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators A Phys. (1)

F. Lee, G. Zhou, H. Yu, and F. S. Chau, “A MEMS-based resonant-scanning lamellar grating Fourier transform micro-spectrometer with laser reference system,” Sens. Actuators A Phys. 149(2), 221–228 (2009).
[CrossRef]

Other (3)

V. Saptari, “Fourier-Transform Spectroscopy Instrumentation Engineering”, SPIE International Society for Optical Engineering, 2003.

J. W. Goodman, Introduction to Fourier Optics, Roberts & Company Publishers, 2005.

C. Ataman, H. Urey, “Compact Fourier Transform Spectrometers using FR4 Platform” SNA: A. Physical, A 151 (2009) 9–16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics