Abstract

We demonstrate optical bistability in silicon using a high-Q (Q>105) one-dimensional photonic crystal nanocavity at an extremely low 1.6 µW input power that is one tenth the previously reported value. Owing to the device’s unique geometrical structure, light and heat efficiently confine in a very small region, enabling strong thermo-optic confinement. We also showed with numerical analyses that this device can operate at a speed of ~0.5 µs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low switching-energy and high-repetition-frequency all optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
    [CrossRef]
  2. M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
    [CrossRef] [PubMed]
  3. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flip flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-14-3-1230
    [CrossRef] [PubMed]
  4. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Orlando, 1985).
  5. H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724 (1990).
    [CrossRef]
  6. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2678
    [CrossRef] [PubMed]
  7. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). http://www.opticsinfobase. org/ol/abstract.cfm?URI=ol-30-19-2575
    [CrossRef] [PubMed]
  8. Q. Xu and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31, 341-343 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-341
    [CrossRef] [PubMed]
  9. K. Nozaki and T. Baba, "Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
    [CrossRef]
  10. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
    [CrossRef]
  11. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
    [CrossRef]
  12. E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
    [CrossRef]
  13. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-16-15-11095
    [CrossRef] [PubMed]
  14. A. Zain, N. Johnson, M. Sorel, and R. De La Rue, "Ultra high quality factor one dimensional photonic crystal/ photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12084-12089 (2008). http: //www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12084
    [CrossRef] [PubMed]
  15. P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  16. M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009).
    [CrossRef] [PubMed]
  17. E. Kuramochi, H. Taniyama, K. Kawasaki, and M. Notomi, "Fabrication of ultrahigh-Q nanocavity with onedimensional photonic gap," in Extended Abstracts of 70th Autumn JSAP Meeting, (Jpn. Soc. Appl. Phys., Tokyo, 2009), 9p-B-14. (in Japanese)
  18. E. Kuramochi, NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan, H. Taniyama, K. Kawasaki, and M. Notomi are preparing a manuscript to be called "Ultrahigh-Q nanocavity with 1D mode-gap barrier in silicon on insulator."
  19. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-801
    [CrossRef] [PubMed]
  20. T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-377
    [CrossRef] [PubMed]
  21. T. Tanabe, H. Taniyama, and M. Notomi, "Carrier diffusion and recombination in photonic crystal nanocavity optical switches," J. Lightwave Technol. 26, 1396-1403 (2008).
    [CrossRef]
  22. M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, "Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics," In Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS’09), CPDB10, Baltimore, May 31-June 5 (2009).
    [PubMed]
  23. S. Combrié, A. De Rossi, Q. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: Microwatt nonlinearity at 1.55 μm," Opt. Lett. 33, 1908-1910 (2008). http://www.opticsinfobase.org/ol/ abstract.cfm?URI=ol-33-16-1908
    [CrossRef] [PubMed]

2009

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

2008

2007

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

2006

2005

2004

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

1990

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724 (1990).
[CrossRef]

Asano, T.

Baba, T.

K. Nozaki and T. Baba, "Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

Barclay, P.

Benisty, H.

Besten, J.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Binsma, H.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Cassette, S.

E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Combrié, S.

S. Combrié, A. De Rossi, Q. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: Microwatt nonlinearity at 1.55 μm," Opt. Lett. 33, 1908-1910 (2008). http://www.opticsinfobase.org/ol/ abstract.cfm?URI=ol-33-16-1908
[CrossRef] [PubMed]

E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

De La Rue, R.

De Rossi, A.

S. Combrié, A. De Rossi, Q. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: Microwatt nonlinearity at 1.55 μm," Opt. Lett. 33, 1908-1910 (2008). http://www.opticsinfobase.org/ol/ abstract.cfm?URI=ol-33-16-1908
[CrossRef] [PubMed]

E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

de Vries, T.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Deotare, P.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Dorren, H.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Frank, I.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Hill, M.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Johnson, N.

Kawaguchi, H.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low switching-energy and high-repetition-frequency all optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

Kawanishi, S.

Khan, M.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Khoe, G.-D.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Kira, G.

Kuramochi, E.

Kurokawa, T.

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724 (1990).
[CrossRef]

Leijtens, X.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Lipson, M.

Loncar, M.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

McCutcheon, M.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Mitsugi, S.

Mori, T.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low switching-energy and high-repetition-frequency all optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

Noda, S.

Notomi, M.

M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-16-15-11095
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, "Carrier diffusion and recombination in photonic crystal nanocavity optical switches," J. Lightwave Technol. 26, 1396-1403 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flip flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-14-3-1230
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). http://www.opticsinfobase. org/ol/abstract.cfm?URI=ol-30-19-2575
[CrossRef] [PubMed]

Nozaki, K.

K. Nozaki and T. Baba, "Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

Oei, Y.-S.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Painter, O.

Shinya, A.

Smalbrugge, B.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Smit, M.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Song, B.

Sorel, M.

Srinivasan, K.

Takara, H.

Tanabe, T.

Taniyama, H.

Tran, N.

E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Tran, Q.

Tsuda, H.

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724 (1990).
[CrossRef]

Uesugi, T.

Vahala, K.

M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Weidner, E.

E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Xu, Q.

Yamayoshi, Y.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low switching-energy and high-repetition-frequency all optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

Yokohama, I.

Zain, A.

Appl. Phys. Lett.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low switching-energy and high-repetition-frequency all optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724 (1990).
[CrossRef]

K. Nozaki and T. Baba, "Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Nature

M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Opt. Express

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flip flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-14-3-1230
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2678
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-16-15-11095
[CrossRef] [PubMed]

A. Zain, N. Johnson, M. Sorel, and R. De La Rue, "Ultra high quality factor one dimensional photonic crystal/ photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12084-12089 (2008). http: //www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12084
[CrossRef] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-801
[CrossRef] [PubMed]

T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-377
[CrossRef] [PubMed]

Opt. Lett.

Other

H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Orlando, 1985).

E. Kuramochi, H. Taniyama, K. Kawasaki, and M. Notomi, "Fabrication of ultrahigh-Q nanocavity with onedimensional photonic gap," in Extended Abstracts of 70th Autumn JSAP Meeting, (Jpn. Soc. Appl. Phys., Tokyo, 2009), 9p-B-14. (in Japanese)

E. Kuramochi, NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan, H. Taniyama, K. Kawasaki, and M. Notomi are preparing a manuscript to be called "Ultrahigh-Q nanocavity with 1D mode-gap barrier in silicon on insulator."

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, "Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics," In Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS’09), CPDB10, Baltimore, May 31-June 5 (2009).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic illustration of stack cavity. (b) Scanning electron microscope image of a fabricated stack cavity. (c) Magnetic field (Hz 2) profile of a stack cavity obtained by using 3D finite-difference time-domain method. (d) Schematic illustration of ladder cavity. (e) Scanning electron microscope image of a fabricated ladder cavity. (f) Magnetic field (Hz 2) profile of a ladder cavity obtained by using 3D finite-difference time-domain method.

Fig. 2.
Fig. 2.

(a) Stack cavity transmission spectrum, plotted for different P in. (b) Ladder cavity transmission spectrum, plotted for different P in.

Fig. 3.
Fig. 3.

(a) Steady-state heat distribution for stack cavity: The calculated thermal resistance is 2.33×105 K·W-1. (b) Heat flux lines in stack cavity: A significant proportion of heat escapes through SiO2. (c) Heat distribution for ladder cavity: The calculated thermal resistance is 5.53×105 K·W-1. (d) Heat flux lines for ladder cavity: Heat mainly escapes via the Si bridge.

Fig. 4.
Fig. 4.

Dependence of cavity thermal resistance on Si bridge width: Black dots show the results of numerical calculation, the red line represents the thermal resistance of a stack cavity. The blue and the green curve are derived from Eq. (7) and Eq. (8) respectively.

Fig. 5.
Fig. 5.

(a) Schematic illustration of 2D cavity. (b) Steady-state heat distribution of 2D cavity: The calculated thermal resistance is 1.99×104 K·W-1.

Fig. 6.
Fig. 6.

Simulated time-dependent heat relaxation for 1D and 2D cavities.

Tables (1)

Tables Icon

Table 1. Parameters and results for the three cavity types

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n T n T ) = + 1.87 × 10 4 K 1 ,
δ λ P in Q T r .
P tr 1 = r n T R th T r Q 2
Δ T + p k Si Si O 2 = 0 ,
δ T l = j k ,
Φ = 𝓥 p d r = 𝒮 j d S 4 e h j ,
R th = δ T Φ = l 4 k h 1 e .
R th = R a + R b = l 4 k h ( 1 2 e + 1 w + 2 e )

Metrics