Abstract

In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission response of CROW devices, under finite fabrication resolution steps.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  2. J. E. Heebner, R. W. Boyd, and Q-Han. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 4, 722-731 (2002).
    [CrossRef]
  3. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in gaas micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
    [CrossRef]
  4. M. A. Preciado and M. A. Muriel, "All-pass optical structures for repetition rate multiplication," Opt. Express 16, 11162-11168 (2008).
    [CrossRef] [PubMed]
  5. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
    [CrossRef]
  6. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  7. J. Capmany, P. Munoz, J. D. Domenech, and M. A. Muriel, "Apodized coupled resonator waveguides," Opt. Express 15, 10196-10206 (2007).
    [CrossRef] [PubMed]
  8. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007).
    [CrossRef] [PubMed]
  9. F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of μ-Bends and μ-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys 44, 5322-5323 (2005).
    [CrossRef]
  10. K. Ebeling, Integrated Optoelectronics (Springer-Verlag, 1993).
    [CrossRef]
  11. F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express 14,3872-3886 (2006).
    [CrossRef] [PubMed]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  13. "BeamPROP 8.1, RSoft Design Group, Inc." http://www.rsoftdesign.com.
  14. "ePIXfab, the European Silicon Photonics Platform." http://www.epixfab.eu/.
  15. J. Capmany, and M.A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," J. Lightwave Technol. 8, 1904-1919 (1990).
    [CrossRef]
  16. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled resonator optical waveguides," Opt. Express 12, 90-103 (2004).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (2)

2005 (2)

2004 (1)

2002 (1)

J. E. Heebner, R. W. Boyd, and Q-Han. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 4, 722-731 (2002).
[CrossRef]

2000 (2)

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in gaas micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

1999 (1)

1990 (1)

J. Capmany, and M.A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," J. Lightwave Technol. 8, 1904-1919 (1990).
[CrossRef]

Absil, P. P.

Baba, T.

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of μ-Bends and μ-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys 44, 5322-5323 (2005).
[CrossRef]

Baets, R.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Boyd, R. W.

J. E. Heebner, R. W. Boyd, and Q-Han. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 4, 722-731 (2002).
[CrossRef]

Campenhout, J. V.

Capmany, J.

J. Capmany, P. Munoz, J. D. Domenech, and M. A. Muriel, "Apodized coupled resonator waveguides," Opt. Express 15, 10196-10206 (2007).
[CrossRef] [PubMed]

J. Capmany, and M.A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," J. Lightwave Technol. 8, 1904-1919 (1990).
[CrossRef]

Cho, P. S.

Domenech, J. D.

Dumon, P.

Fukazawa, T.

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of μ-Bends and μ-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys 44, 5322-5323 (2005).
[CrossRef]

Heebner, J. E.

J. E. Heebner, R. W. Boyd, and Q-Han. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 4, 722-731 (2002).
[CrossRef]

Ho, P.-T.

Hryniewicz, J. V.

Huang, Y.

Joneckis, L. G.

Lee, R. K.

Little, B. E.

Luyssaert, B.

Mookherjea, S.

Munoz, P.

Muriel, M. A.

Muriel, M.A.

J. Capmany, and M.A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," J. Lightwave Technol. 8, 1904-1919 (1990).
[CrossRef]

Ohno, F.

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of μ-Bends and μ-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys 44, 5322-5323 (2005).
[CrossRef]

Paloczi, G.

Park, Q-Han.

J. E. Heebner, R. W. Boyd, and Q-Han. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 4, 722-731 (2002).
[CrossRef]

Poon, J.

Preciado, M. A.

Rooks, M.

Scherer, A.

Scheuer, J.

Sekaric, L.

Taillaert, D.

Thourhout, D. V.

Vlasov, Y.

Vlasov, Y. A.

Wiaux, V.

Wilson, R. A.

Xia, F.

Xu, Y.

Yariv, A.

Electron. Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

J. Lightwave Technol. (2)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

J. Capmany, and M.A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," J. Lightwave Technol. 8, 1904-1919 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. E. Heebner, R. W. Boyd, and Q-Han. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 4, 722-731 (2002).
[CrossRef]

Jpn. J. Appl. Phys (1)

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of μ-Bends and μ-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys 44, 5322-5323 (2005).
[CrossRef]

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (3)

K. Ebeling, Integrated Optoelectronics (Springer-Verlag, 1993).
[CrossRef]

"BeamPROP 8.1, RSoft Design Group, Inc." http://www.rsoftdesign.com.

"ePIXfab, the European Silicon Photonics Platform." http://www.epixfab.eu/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Parallel waveguide coupler schematics for (a) gap and (b) offset control of the coupling. Lc is the physical straight section of the coupler, L 0 e is the coupling effective length without offset and Loff e the coupling effective length when a longitudinal offset is applied.

Fig. 2.
Fig. 2.

Illustration of the coupling constant change as the effective coupling length changes, increasing (a) or decreasing (b) the coupling constant. L 0 e is the coupling effective length without offset and Loff e the coupling effective length when a longitudinal offset is applied.

Fig. 3.
Fig. 3.

Coupling constant (K) vs waveguide width and d 0 (a) and (b) or longitudinal offset (c) and (d) between the coupler waveguides for a nominal waveguide width w=500nm. The coupler length is set to be 53.3 µm and the gap to 150nm in (a) and (c). The coupler length is set to be 20 µm and the gap to 100nm in (b) and (d).

Fig. 4.
Fig. 4.

Transmission for 3 (a) and 5 (b) racetracks CROW. The uniform response (K=0.2 in all couplers) is depicted in continuous line and the apodized response (K values from the table) is depicted with the dashed line.

Fig. 5.
Fig. 5.

Transmission spectra for 3 ring CROW device, waveguide width 500 nm, and finite step resolution in the process for a coupler length of 20µm (a) and 53.3µm (b). The insets show the ripples in the pass-band.

Fig. 6.
Fig. 6.

Transmission spectra for 5 ring CROW device, waveguide width 500 nm, and finite step resolution in the process for a coupler length of 20µm (a) and 53.3µm (b). The insets show the ripples in the pass-band.

Fig. 7.
Fig. 7.

Normalized Group Delay for 3 ring CROW device, waveguide width 500 nm, and finite step resolution in the process for a coupler length of 20µm (a) and 53.3µm (b).

Fig. 8.
Fig. 8.

Normalized Group Delay for 5 ring CROW device, waveguide width 500 nm, and finite step resolution in the process for a coupler length of 20µm (a) and 53.3µm (b).

Tables (2)

Tables Icon

Table 1. 3 and 5 racetracks CROW gap apodized (a) 3 racetracks CROW

Tables Icon

Table 2. 3 and 5 racetracks CROW offset apodized (a) 3 racetracks CROW

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K = sin 2 ( π 2 L eff L b )
δ = β L cav = 2 π λ · n e · L cav
τ d T c = ϕ ( δ ) δ

Metrics