Abstract

An optical dipole nano-antenna can be constructed by placing a sub-wavelength dielectric (e.g., air) gap between two metallic regions. For typical applications using light in the infrared region, the gap width is generally in the range between 50 and 100 nm. Owing to the close proximity of the electrodes, these antennas can generate very intense electric fields that can be used to excite nonlinear effects. For example, it is possible to trigger surface Raman scattering on molecules placed in the vicinity of the nano-antenna, allowing the fabrication of biological sensors and imaging systems in the nanometric scale. However, since nano-antennas are passive devices, they need to receive light from external sources that are generally much larger than the antennas. In this article, we numerically study the coupling of light from microdisk lasers into plasmonic nano-antennas. We show that, by using micro-cavities, we can further enhance the electric fields inside the nano-antennas.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. A. Boltasseva, S. I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-4237 .
    [CrossRef] [PubMed]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  5. J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, “Surface Plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87(22), 221101 (2005).
    [CrossRef]
  6. A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
    [CrossRef]
  7. V. A. Poldoskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002).
    [CrossRef]
  8. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144 .
    [CrossRef] [PubMed]
  9. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13272 .
    [CrossRef] [PubMed]
  10. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007).
    [CrossRef]
  11. M. L. Brongersma, “Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008).
    [CrossRef]
  12. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
    [CrossRef]
  13. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [CrossRef]
  14. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19447 .
    [CrossRef] [PubMed]
  15. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
    [CrossRef]
  16. N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82(21), 3608–3610 (2003).
    [CrossRef]
  17. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13(9), 3310–3322 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3310 .
    [CrossRef] [PubMed]
  18. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44(15), 3069–3076 (2005).
    [CrossRef] [PubMed]
  19. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
    [CrossRef]
  20. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
    [CrossRef] [PubMed]
  21. S. J. Choi, K. Djordjev, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003).
    [CrossRef]
  22. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
    [CrossRef]
  23. M. Fujita, R. Ushigone, and T. Baba, “Continuous wave lasing in GaInAsP injection laser with threshold current of 40 µA,” Electron. Lett. 36, 790–791 (2000).
    [CrossRef]
  24. H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009).
    [CrossRef]
  25. Fullwave 6.1 RSOFT design group, 2008, http://www.rsoftdesign.com
  26. Y. Z. Huang and Y. D. Yang, “Mode coupling and vertical radiation loss for whispering gallery modes in 3-D microcavities,” IEEE/OSA, J. Lightwave Technol. 26(11), 1411–1416 (2008).
    [CrossRef]
  27. H. T. Hattori, “Modal analysis of one-dimensional nonuniform arrays of square resonators,” J. Opt. Soc. Am. B 25(11), 1873–1881 (2008).
    [CrossRef]

2009

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009).
[CrossRef]

2008

Y. Z. Huang and Y. D. Yang, “Mode coupling and vertical radiation loss for whispering gallery modes in 3-D microcavities,” IEEE/OSA, J. Lightwave Technol. 26(11), 1411–1416 (2008).
[CrossRef]

H. T. Hattori, “Modal analysis of one-dimensional nonuniform arrays of square resonators,” J. Opt. Soc. Am. B 25(11), 1873–1881 (2008).
[CrossRef]

M. L. Brongersma, “Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19447 .
[CrossRef] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144 .
[CrossRef] [PubMed]

2007

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13272 .
[CrossRef] [PubMed]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

2005

2004

2003

S. J. Choi, K. Djordjev, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82(21), 3608–3610 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

2002

V. A. Poldoskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

2000

M. Fujita, R. Ushigone, and T. Baba, “Continuous wave lasing in GaInAsP injection laser with threshold current of 40 µA,” Electron. Lett. 36, 790–791 (2000).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Baba, T.

M. Fujita, R. Ushigone, and T. Baba, “Continuous wave lasing in GaInAsP injection laser with threshold current of 40 µA,” Electron. Lett. 36, 790–791 (2000).
[CrossRef]

Barbosa, C. L.

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44(15), 3069–3076 (2005).
[CrossRef] [PubMed]

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[CrossRef]

Baudrion, A. L.

J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, “Surface Plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

Benson, T. M.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

Blanchard, R.

Boltasseva, A.

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

Bour, D.

Bozhevolnyi, S. I.

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, “Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008).
[CrossRef]

Capasso, F.

Cazo, R. M.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[CrossRef]

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44(15), 3069–3076 (2005).
[CrossRef] [PubMed]

Choi, S. J.

S. J. Choi, K. Djordjev, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003).
[CrossRef]

Choquette, K. D.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82(21), 3608–3610 (2003).
[CrossRef]

Corzine, S.

Crozier, K. B.

Cubukcu, E.

Danner, A. J.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82(21), 3608–3610 (2003).
[CrossRef]

Dapkus, P. D.

S. J. Choi, K. Djordjev, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003).
[CrossRef]

Dereux, A.

J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, “Surface Plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

di Cioccio, L.

Diehl, L.

Djordjev, K.

S. J. Choi, K. Djordjev, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Edamura, T.

El Melhaoui, L.

Engheta, N.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007).
[CrossRef]

Fan, J.

Fedeli, J. M.

Fischer, H.

Fujita, M.

M. Fujita, R. Ushigone, and T. Baba, “Continuous wave lasing in GaInAsP injection laser with threshold current of 40 µA,” Electron. Lett. 36, 790–791 (2000).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gonzalez, M. U.

J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, “Surface Plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Hattori, H. T.

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009).
[CrossRef]

H. T. Hattori, “Modal analysis of one-dimensional nonuniform arrays of square resonators,” J. Opt. Soc. Am. B 25(11), 1873–1881 (2008).
[CrossRef]

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44(15), 3069–3076 (2005).
[CrossRef] [PubMed]

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[CrossRef]

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13(9), 3310–3322 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3310 .
[CrossRef] [PubMed]

Höfler, G.

Huang, Y. Z.

Y. Z. Huang and Y. D. Yang, “Mode coupling and vertical radiation loss for whispering gallery modes in 3-D microcavities,” IEEE/OSA, J. Lightwave Technol. 26(11), 1411–1416 (2008).
[CrossRef]

Huh, J.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Hwang, J. K.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Imada, M.

Jagadish, C.

H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009).
[CrossRef]

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Kan, H.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kim, J. S.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Kim, S. H.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Kivshar, Y. S.

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Leclercq, J. L.

Lee, Y. H.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Leosson, K.

Letartre, X.

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007).
[CrossRef]

Liu, D.

H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Martin, O. J. F.

McKerracher, I.

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Minovich, A.

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

Neshev, D. N.

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

Nikolajsen, T.

Noda, S.

Nosich, A. I.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

Ohnishi, D.

Okano, T.

Park, H. G.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Pflügl, C.

Poldoskiy, V. A.

V. A. Poldoskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Rojo-Romeo, P.

Ryu, H. Y.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007).
[CrossRef]

Sarychev, A. K.

V. A. Poldoskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002).
[CrossRef]

Schneider, V. M.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[CrossRef]

H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44(15), 3069–3076 (2005).
[CrossRef] [PubMed]

Seassal, C.

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Sewell, P. D.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

Shalaev, V. M.

V. A. Poldoskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002).
[CrossRef]

Søndergaard, T.

Tan, H. H.

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009).
[CrossRef]

Ushigone, R.

M. Fujita, R. Ushigone, and T. Baba, “Continuous wave lasing in GaInAsP injection laser with threshold current of 40 µA,” Electron. Lett. 36, 790–791 (2000).
[CrossRef]

Viktorovitch, P.

Wang, Q. J.

Weeber, J. C.

J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, “Surface Plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

Yamanishi, M.

Yang, Y. D.

Y. Z. Huang and Y. D. Yang, “Mode coupling and vertical radiation loss for whispering gallery modes in 3-D microcavities,” IEEE/OSA, J. Lightwave Technol. 26(11), 1411–1416 (2008).
[CrossRef]

Yokouchi, N.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82(21), 3608–3610 (2003).
[CrossRef]

Yu, N.

Zhu, J.

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Zussy, M.

Appl. Opt.

Appl. Phys. Lett.

J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, “Surface Plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87(22), 221101 (2005).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82(21), 3608–3610 (2003).
[CrossRef]

Electron. Lett.

M. Fujita, R. Ushigone, and T. Baba, “Continuous wave lasing in GaInAsP injection laser with threshold current of 40 µA,” Electron. Lett. 36, 790–791 (2000).
[CrossRef]

IEEE J. Quantum Electron.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

IEEE Photon. Lett.

H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

S. J. Choi, K. Djordjev, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003).
[CrossRef]

IEEE/OSA, J. Lightwave Technol.

Y. Z. Huang and Y. D. Yang, “Mode coupling and vertical radiation loss for whispering gallery modes in 3-D microcavities,” IEEE/OSA, J. Lightwave Technol. 26(11), 1411–1416 (2008).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

V. A. Poldoskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[CrossRef]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nat. Photonics

M. L. Brongersma, “Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Nature

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun.

A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009).
[CrossRef]

Opt. Express

H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13(9), 3310–3322 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3310 .
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19447 .
[CrossRef] [PubMed]

A. Boltasseva, S. I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-4237 .
[CrossRef] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144 .
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13272 .
[CrossRef] [PubMed]

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
[CrossRef] [PubMed]

Phys. Rev. B

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Fullwave 6.1 RSOFT design group, 2008, http://www.rsoftdesign.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the epitaxially layered structure and (b) Microdisk laser coupled to a single-mode waveguide.

Fig. 2
Fig. 2

(a) Magnetic field (Hy) spectrum at the centre of the waveguide and (b) Magnetic field distribution at the main resonant peak at λ=1166 nm (c) vertical distribution of the mode at λ=1166 nm (d) Refractive index profile of the epitaxially layered structure.

Fig. 3
Fig. 3

(a) Direct coupling scheme from the microdisk into a nano-antenna and (b) Hy spectrum at the centre of the waveguide.

Fig. 4
Fig. 4

(a) Microdisk coupling light to the nano-antenna via a nano-taper and (b) Hy spectrum at the centre of the waveguide.

Fig. 5
Fig. 5

(a) Micro-disk coupling light to a nano-antenna via a photonic crystal cavity and (b) Hy spectrum at the centre of the waveguide.

Fig. 6
Fig. 6

Field distributions at the main peak at λ=1164.5 nm: (a) Magnetic field distribution (Hy), (b) Electric field (Ex) distribution and (c) Highlight of the electric field in the nano-antenna

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J m ( n eff k R ) H m ' ( 2 ) ( K R ) = η J m ' ( n eff k R ) H m ( 2 ) ( K R )

Metrics