Abstract

Intensity interrogation of surface plasmon resonance (IISPR) biosensors possesses the greatest sensitivity beyond other interrogations and is operated at a fixed incident angle to enable real-time analysis without time delay, so that it promises excellent performance in biological/chemical detection and SPR imaging systems. Here we provide a general model to describe its sensitivity based on Lorentz equation and unveil the relation between the sensitivity and the metal thickness. This model presents the dependency between sensitivity and metal thickness, and the optimal thickness of gold layers to maximize the sensitivity in our experiment is 53 nm that agrees well in both measurement and simulation. This general model can be further applied in other intensity-interrogation SPR configurations as a design rule for sensing and imaging applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gizeli and C. R. Lowe, “Immunosensors,” Curr. Opin. Biotechnol. 7(1), 66–71 (1996).
    [CrossRef] [PubMed]
  2. J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
    [CrossRef] [PubMed]
  3. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  4. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54, 3–15 (1999).
    [CrossRef]
  5. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
    [CrossRef] [PubMed]
  6. T. Zacher and E. Wischerhoff, “Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Binding Processes in Biosensing Hydrogels,” Langmuir 18(5), 1748–1759 (2002).
    [CrossRef]
  7. V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76(24), 7257–7262 (2004).
    [CrossRef] [PubMed]
  8. K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
    [CrossRef] [PubMed]
  9. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
    [CrossRef]
  10. F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
    [CrossRef] [PubMed]
  11. H. F. Chen, C. C. Gong, and T. J. Yen, “An innovative surface plasmon resonance biosensor with stationary light source and detection system capable of adjustable incident angles with large range,” (to be submitted).
  12. E. Fontana, “Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media,” Appl. Opt. 45(29), 7632–7642 (2006).
    [CrossRef] [PubMed]
  13. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19(24), 2062–2064 (1994).
    [CrossRef] [PubMed]

2006 (2)

2004 (2)

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76(24), 7257–7262 (2004).
[CrossRef] [PubMed]

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

2002 (1)

T. Zacher and E. Wischerhoff, “Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Binding Processes in Biosensing Hydrogels,” Langmuir 18(5), 1748–1759 (2002).
[CrossRef]

2001 (1)

J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
[CrossRef] [PubMed]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54, 3–15 (1999).
[CrossRef]

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

1996 (2)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[CrossRef]

E. Gizeli and C. R. Lowe, “Immunosensors,” Curr. Opin. Biotechnol. 7(1), 66–71 (1996).
[CrossRef] [PubMed]

1994 (1)

Bastmeyer, M.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Bechinger, C.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Chen, S. J.

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

Chien, F. C.

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

Fantini, S.

Fontana, E.

Franceschini, M. A.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54, 3–15 (1999).
[CrossRef]

Giebel, K. F.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Gizeli, E.

E. Gizeli and C. R. Lowe, “Immunosensors,” Curr. Opin. Biotechnol. 7(1), 66–71 (1996).
[CrossRef] [PubMed]

Gratton, E.

Harrison, D. J.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76(24), 7257–7262 (2004).
[CrossRef] [PubMed]

Herminghaus, S.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54, 3–15 (1999).
[CrossRef]

Kanda, V.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76(24), 7257–7262 (2004).
[CrossRef] [PubMed]

Kariuki, J. K.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76(24), 7257–7262 (2004).
[CrossRef] [PubMed]

Leiderer, P.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Lipson, S. G.

Lowe, C. R.

E. Gizeli and C. R. Lowe, “Immunosensors,” Curr. Opin. Biotechnol. 7(1), 66–71 (1996).
[CrossRef] [PubMed]

Maier, J. S.

McDermott, M. T.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76(24), 7257–7262 (2004).
[CrossRef] [PubMed]

McDonnell, J. M.

J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
[CrossRef] [PubMed]

Ran, B.

Riedel, M.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Walker, S. A.

Weiland, U.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Wischerhoff, E.

T. Zacher and E. Wischerhoff, “Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Binding Processes in Biosensing Hydrogels,” Langmuir 18(5), 1748–1759 (2002).
[CrossRef]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54, 3–15 (1999).
[CrossRef]

Zacher, T.

T. Zacher and E. Wischerhoff, “Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Binding Processes in Biosensing Hydrogels,” Langmuir 18(5), 1748–1759 (2002).
[CrossRef]

Anal. Chem. (1)

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76(24), 7257–7262 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[CrossRef]

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

E. Gizeli and C. R. Lowe, “Immunosensors,” Curr. Opin. Biotechnol. 7(1), 66–71 (1996).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
[CrossRef] [PubMed]

Langmuir (1)

T. Zacher and E. Wischerhoff, “Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Binding Processes in Biosensing Hydrogels,” Langmuir 18(5), 1748–1759 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Sensor Actuat, Biol. Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54, 3–15 (1999).
[CrossRef]

Other (2)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).

H. F. Chen, C. C. Gong, and T. J. Yen, “An innovative surface plasmon resonance biosensor with stationary light source and detection system capable of adjustable incident angles with large range,” (to be submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustrated optical setup of a homemade SPR biosensor with stationary light source and detection system, achieving adjustable incident angles for greater scanning ranges

Fig. 2
Fig. 2

(a) The first-order differentiation of the measured SPR curves about the analyte of distilled water for different thicknesses of gold layers (47, 50, 53, 56, 59 and 62 nm, respectively). (b) Simulation results of internal damping and radiation damping for different gold thicknesses (εAu =−10.98+1.4i was used in simulation).

Fig. 3
Fig. 3

Dynamic monitoring of glucose solutions based on different gold thicknesses. The incidence in each metal thickness was 0.08° greater than the angle with extreme slope to obtain a better sensitivity and linear variation in dynamic measurements. Besides, the glucose solutions with 0.05 M and 0.1 M concentrations were introduced into the flow channel sequentially.

Fig. 4
Fig. 4

Sensitivity comparison among different gold thicknesses. Four to five samples were examined in each thickness, and the maximum sensitivity happens in case of a 53 nm-thick gold layer, which coincides with the numerical calculation results.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S i n t e n s i t y = d R d n a = d k x d n a × d R d k x
R = 1 4 Γ i Γ r a d [ k x ( k S P 0 + Δ k x ) ] 2 + ( Γ i + Γ r a d ) 2
S i n t e n s i t y = 3 π 3 λ ε m 2 ( ε m + n a 2 ) ε m 2 + ε m n a 2 Γ i Γ r a d ( Γ i + Γ r a d ) 3
k x ( k S P 0 + Δ k x ) = Γ i + Γ r a d 3

Metrics