Abstract

A Y-branch integrated dual wavelength laser diode is fabricated for optical microwave generation based on the principle of sideband injection locking. The device integrates a master laser and a slave laser with associated Y-branch coupler. By directly modulating the master laser near its relaxation resonance frequency, multiple sidebands are generated due to enhanced modulation nonlinearity. Beat signal with high spectral purity is obtained by injection locking the slave laser to one of the modulation sidebands. A millimeter-wave carrier of 42-GHz with a phase noise of −94.6 dBc/Hz at 10 kHz offset is demonstrated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19(2), 167–186 (2000).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  3. M. Ogusu, K. Inagaki, and T. Ohira, “Subcarrier multiplexing signal modulation at 60 GHz using two-mode injection-locked Fabry-Perot laser,” Electron. Lett. 36(25), 2102–2103 (2000).
    [CrossRef]
  4. S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
    [CrossRef]
  5. R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
    [CrossRef]
  6. M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
    [CrossRef]
  7. C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
    [CrossRef]
  8. D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
    [CrossRef]
  9. L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
    [CrossRef]
  10. L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett. 49(6), 1265–1267 (2007).
    [CrossRef]
  11. T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
    [CrossRef]
  12. R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
    [CrossRef]
  13. J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
    [CrossRef]
  14. K. Petermann, Laser Diode Modulation and Noise, (Kluwer, Dordrecht, 1991).

2009 (1)

J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
[CrossRef]

2007 (2)

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett. 49(6), 1265–1267 (2007).
[CrossRef]

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
[CrossRef]

2006 (1)

2002 (1)

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

2001 (1)

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

2000 (3)

M. Ogusu, K. Inagaki, and T. Ohira, “Subcarrier multiplexing signal modulation at 60 GHz using two-mode injection-locked Fabry-Perot laser,” Electron. Lett. 36(25), 2102–2103 (2000).
[CrossRef]

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

K. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19(2), 167–186 (2000).
[CrossRef]

1999 (1)

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

1998 (1)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

1997 (1)

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

1995 (1)

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Ahmed, Z.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Bauer, S.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

Brox, 0

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Brox, O.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Chen, H.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
[CrossRef]

Chen, L.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett. 49(6), 1265–1267 (2007).
[CrossRef]

Chen, M.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
[CrossRef]

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

Huang, J.

J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
[CrossRef]

Inagaki, K.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

M. Ogusu, K. Inagaki, and T. Ohira, “Subcarrier multiplexing signal modulation at 60 GHz using two-mode injection-locked Fabry-Perot laser,” Electron. Lett. 36(25), 2102–2103 (2000).
[CrossRef]

Johansson, L. A.

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

Kim, D. Y.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Kitayama, K.

K. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19(2), 167–186 (2000).
[CrossRef]

Kreissl, J

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Kreissl, J.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Laperle, C.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Liu, H. F.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Luo, Y.

J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
[CrossRef]

Meschenmoser, R.

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

Mizuguchi, Y.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

Novak, D.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Ogawa, Y.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Ogusu, M.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

M. Ogusu, K. Inagaki, and T. Ohira, “Subcarrier multiplexing signal modulation at 60 GHz using two-mode injection-locked Fabry-Perot laser,” Electron. Lett. 36(25), 2102–2103 (2000).
[CrossRef]

Ohira, T.

M. Ogusu, K. Inagaki, and T. Ohira, “Subcarrier multiplexing signal modulation at 60 GHz using two-mode injection-locked Fabry-Perot laser,” Electron. Lett. 36(25), 2102–2103 (2000).
[CrossRef]

Pelusi, M.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Pi, Y.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett. 49(6), 1265–1267 (2007).
[CrossRef]

Poirier, M.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Rohde, D.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

Sahin, G

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Sahin, G.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Sartorius, B

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Sartorius, B.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

Song, Y.

J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
[CrossRef]

Sun, C.

J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
[CrossRef]

Svilans, M.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Têtu, M.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Villino, G.

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

Wang, T.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
[CrossRef]

Wen, H.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett. 49(6), 1265–1267 (2007).
[CrossRef]

Wen, S.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett. 49(6), 1265–1267 (2007).
[CrossRef]

Williams, K. J.

Xie, S.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
[CrossRef]

Xiong, B.

J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
[CrossRef]

Zhang, J.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
[CrossRef]

Appl. Phys. Express (1)

J. Huang, C. Sun, Y. Song, B. Xiong, and Y. Luo, “Influence of master laser’s lineshape on the optically generated microwave carrier by injection locking,” Appl. Phys. Express 2, 072502 (2009).
[CrossRef]

Electron. Lett. (4)

M. Ogusu, K. Inagaki, and T. Ohira, “Subcarrier multiplexing signal modulation at 60 GHz using two-mode injection-locked Fabry-Perot laser,” Electron. Lett. 36(25), 2102–2103 (2000).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, 0 Brox, J Kreissl, G Sahin, and B Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002).
[CrossRef]

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, and G. Villino, “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett. 33(16), 1395–1396 (1997).
[CrossRef]

Fiber Integr. Opt. (1)

K. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19(2), 167–186 (2000).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 19(16), 1191–1193 (2007).
[CrossRef]

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Microw. Opt. Technol. Lett. (1)

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett. 49(6), 1265–1267 (2007).
[CrossRef]

Other (1)

K. Petermann, Laser Diode Modulation and Noise, (Kluwer, Dordrecht, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic diagram and (b) photograph of the Y-branch integrated dual wavelength laser diode for microwave generation.

Fig. 2
Fig. 2

Lasing spectrum of the Y-branch integrated dual wavelength laser diode.

Fig. 3
Fig. 3

Small-signal modulation response of laser B biased at 35 mA.

Fig. 4
Fig. 4

Optical spectra of laser B at different modulation frequencies when biased at 35 mA.

Fig. 5
Fig. 5

Schematic diagram of the experimental setup. ML: master laser; SL: slave laser; PD: photodetector; ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer.

Fig. 6
Fig. 6

Optical spectrum of the Y-branch integrated dual wavelength laser diode when the SL is locked to one of the sidebands of the ML.

Fig. 7
Fig. 7

Electrical spectra measured at the Y-branch facet (a) both DFB lasers in free-running state without modulation; (b) laser B modulated at 5.25 GHz, laser A unbiased; (c) laser B under modulation, laser A locked to one of the sidebands.

Fig. 8
Fig. 8

Electrical spectrum of the generated 42-GHz microwave carrier.

Fig. 9
Fig. 9

Phase noise spectra of the optically generated 42-GHz carrier and the modulation signal.

Metrics