Abstract

We demonstrate a compact power-referenced fiber-optic accelerometer using a weakly tilted fiber Bragg grating (TFBG) combined with an abrupt biconical taper. The electric-arc-heating induced taper is located a short distance upstream from the TFBG and functions as a bridge to recouple the TFBG-excited lower-order cladding modes back into the fiber core. This recoupling is extremely sensitive to microbending. We avoid complex wavelength interrogation by simply monitoring power change in reflection, which we show to be proportional to acceleration. In addition, the Bragg resonance is virtually unaffected by fiber bending and can be used as a power reference to cancel out any light source fluctuations. The proposed sensing configuration provides a constant linear response (nonlinearity < 1%) over a vibration frequency range from DC to 250 Hz. The upper vibration frequency limit of measurement is determined by mechanical resonance, and can be tuned by varying the sensor length. The tip-reflection sensing feature enables the sensor head to be made small enough (20~100 mm in length and 2 mm in diameter) for embedded detection. The polymer-tube-package makes the sensor sufficiently stiff for in-field acceleration measurement.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Gerges, T. P. Newson, J. D. C. Jones, and D. A. Jackson, “High-sensitivity fiber-optic accelerometer,” Opt. Lett. 14(4), 251–253 (1989).
    [CrossRef] [PubMed]
  2. S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997).
    [CrossRef]
  3. C. Doyle and G. F. Fernando, “Two-axis optical fiber accelerometer,” Meas. Sci. Technol. 19, 959–961 (2000).
  4. G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18(9), 1233–1243 (2000).
    [CrossRef]
  5. Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007).
    [CrossRef]
  6. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8(12), 1677–1679 (1996).
    [CrossRef]
  7. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998).
    [CrossRef]
  8. T. K. Gangopadhyay, “Prospects for fibre Bragg gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
    [CrossRef]
  9. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
    [CrossRef]
  10. Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
    [CrossRef]
  11. R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, and L. A. Ferreira, “Intensity-referenced and temperature-independent curvature-sensing concept based on chirped fiber Bragg gratings,” Appl. Opt. 44(18), 3821–3826 (2005).
    [CrossRef] [PubMed]
  12. T. Guo, Q. D. Zhao, H. Zhang, C. S. Zhang, G. L. Huang, L. F. Xue, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating dynamic pressure sensing system,” Opt. Lett. 31(15), 2269–2271 (2006).
    [CrossRef] [PubMed]
  13. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
    [CrossRef] [PubMed]
  14. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
    [CrossRef]
  15. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991).
    [CrossRef]
  16. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
    [CrossRef] [PubMed]
  17. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
    [CrossRef]
  18. S. Laflamme, S. Lacroix, J. Bures, and X. Daxhelet, “Understanding power leakage in tapered solid core microstructured fibers,” Opt. Express 15(2), 387–396 (2007).
    [CrossRef] [PubMed]
  19. A. J. Fielding, K. Edinger, and C. C. Davis, “Experimental observation of mode evolution in single-mode tapered optical fibers,” J. Lightwave Technol. 17(9), 1649–1656 (1999).
    [CrossRef]
  20. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
    [CrossRef] [PubMed]
  21. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett. 32(14), 1974–1976 (2007).
    [CrossRef] [PubMed]
  22. Z. B. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [CrossRef] [PubMed]
  23. D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
    [CrossRef]
  24. J. Ju, L. Ma, W. Jin, and Y. M. Hu, “Photonic bandgap fiber tapers and in-fiber interferometric sensors,” Opt. Lett. 34(12), 1861–1863 (2009).
    [CrossRef] [PubMed]
  25. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
    [CrossRef] [PubMed]
  26. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]

2009

2008

T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
[CrossRef] [PubMed]

Z. B. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[CrossRef] [PubMed]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

2007

2006

2005

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, and L. A. Ferreira, “Intensity-referenced and temperature-independent curvature-sensing concept based on chirped fiber Bragg gratings,” Appl. Opt. 44(18), 3821–3826 (2005).
[CrossRef] [PubMed]

2004

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
[CrossRef] [PubMed]

T. K. Gangopadhyay, “Prospects for fibre Bragg gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[CrossRef]

2003

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

2000

C. Doyle and G. F. Fernando, “Two-axis optical fiber accelerometer,” Meas. Sci. Technol. 19, 959–961 (2000).

G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18(9), 1233–1243 (2000).
[CrossRef]

1999

1998

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998).
[CrossRef]

1997

S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997).
[CrossRef]

1996

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8(12), 1677–1679 (1996).
[CrossRef]

1991

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991).
[CrossRef]

1989

Albert, J.

Althouse, B. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998).
[CrossRef]

Araújo, F. M.

Badenes, G.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Barton, J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Bennion, I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Berkoff, T. A.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8(12), 1677–1679 (1996).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991).
[CrossRef]

Bures, J.

Caldas, P.

Chan, C. F.

Chen, C.

Chen, X. F.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Cranch, G. A.

Dandridge, A.

S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997).
[CrossRef]

Danver, B.

S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997).
[CrossRef]

Davis, C. C.

Daxhelet, X.

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Dong, X. Y.

Doyle, C.

C. Doyle and G. F. Fernando, “Two-axis optical fiber accelerometer,” Meas. Sci. Technol. 19, 959–961 (2000).

Edinger, K.

Eggleton, B. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
[CrossRef] [PubMed]

Fabris, J. L.

Falate, R.

Fender, A.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Fernando, G. F.

C. Doyle and G. F. Fernando, “Two-axis optical fiber accelerometer,” Meas. Sci. Technol. 19, 959–961 (2000).

Ferreira, L. A.

Fielding, A. J.

Frazão, O.

Gangopadhyay, T. K.

T. K. Gangopadhyay, “Prospects for fibre Bragg gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[CrossRef]

George, D. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Gerges, A. S.

Gonthier, F.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

Guo, T.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Hu, Y. M.

Huang, G. L.

Ivanov, A.

Jackson, D. A.

Jafari, A.

Jin, W.

Johnson, G. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998).
[CrossRef]

Jones, B. J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Jones, J. D. C.

Ju, J.

Kersey, A. D.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8(12), 1677–1679 (1996).
[CrossRef]

Kreuzer, M. P.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Lacquet, M. B.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

Lacroix, S.

S. Laflamme, S. Lacroix, J. Bures, and X. Daxhelet, “Understanding power leakage in tapered solid core microstructured fibers,” Opt. Express 15(2), 387–396 (2007).
[CrossRef] [PubMed]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

Laflamme, S.

Laronche, A.

Li, F.

Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007).
[CrossRef]

Liu, Y. L.

Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007).
[CrossRef]

Loock, H. P.

Love, J. D.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

Lu, C.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

Ma, L.

MacPherson, W. N.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Magi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Mägi, E. C.

Maier, R. R. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

McCulloch, S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Minkovich, V. P.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Monzón-Hernández, D.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Nash, P. J.

Newson, T. P.

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Pereira, D. A.

Romero, R.

Salgado, H. M.

Santos, J. L.

Schermer, R. T.

Shum, P.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Smith, G. W.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Spammer, S. J.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Steinvurzel, P.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

Suo, R.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Swart, P. L.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

Thomson, D. J.

Tian, Z. B.

Todd, M. D.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998).
[CrossRef]

Tveten, A.

S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997).
[CrossRef]

Villatoro, J.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Vohra, S. T.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998).
[CrossRef]

S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997).
[CrossRef]

Wang, Y. J.

Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007).
[CrossRef]

Xiao, H.

Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007).
[CrossRef]

Xue, L. F.

Yam, S. S.

Zhang, C. S.

Zhang, H.

Zhang, L.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

Zhang, S. W.

Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007).
[CrossRef]

Zhao, Q. D.

Zhu, Y. N.

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Appl. Phys. Lett.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Electron. Lett.

S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997).
[CrossRef]

IEE Proc.J. Optoelectron.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8(12), 1677–1679 (1996).
[CrossRef]

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998).
[CrossRef]

Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003).
[CrossRef]

IEEE Sens. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007).
[CrossRef]

C. Doyle and G. F. Fernando, “Two-axis optical fiber accelerometer,” Meas. Sci. Technol. 19, 959–961 (2000).

Opt. Express

Opt. Lett.

Sens. Actuators A Phys.

T. K. Gangopadhyay, “Prospects for fibre Bragg gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of abrupt-tapered TFBG accelerometer.

Fig. 2
Fig. 2

Photograph of the electric-arc-heating induced abrupt-taper with a diameter waist of 70 μm over a length of 653 μm.

Fig. 3
Fig. 3

TFBG spectra with and without taper.

Fig. 4
Fig. 4

Tapered TFBG reflection spectra versus (a) bending and (b) temperature.

Fig. 5
Fig. 5

Numerical analysis of the composition of the ghost modes in a 4° TFBG: the amplitude distributions and transmission spectra of the basic low order cladding LPnm modes and the first-order odd LP1m modes (inset).

Fig. 6
Fig. 6

Experimental setup of the acceleration sensing system (centre), with insets of (a) acceleration calibration and (b) polymer tube sensing configuration.

Fig. 7
Fig. 7

Power response of Bragg & ghost reflection of sensor with a tube length of 32 mm and following a harmonic oscillation (~50 Hz) as inset.

Fig. 8
Fig. 8

Linear response of sensor output (Pp-p) versus applied acceleration (G). The inset shows ghost power response in time domain (40 Hz harmonic oscillation output for the sensor with a resonant frequency of 82 Hz).

Fig. 9
Fig. 9

Acceleration responsivity of sensor tubes with different free length over a broad frequency.

Fig. 10
Fig. 10

Resonant frequency of the accelerometer tube (d = 1.65 mm) versus its free length, combining with a calculated exponential fitting of f = 110058/l−2 (red curve).

Fig. 11
Fig. 11

Angular dependence of acceleration responsivity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = 1 2 π 8 E I ρ A l 4

Metrics