Abstract

We report the color-tuning and switching optical transport characters of CdS hybrid plasmonic waveguide by using near-field optical microscopy. The guided photoluminescence spectra under various waveguide lengths demonstrate a spectroscopic red-shift for the part of CdS nanoribbon placed on the sapphire substrate and an energy compensation at Ag film. Surface plasmon polariton leakage and radiation are explored by near-field characterizations. Finite difference time domain simulations have good agreement with the experimental observations of subwavelength confinement and propagation. With a strong end facet emission, the suggested hybrid plasmonic waveguide can serve as a color-changeable optical nanosource in integrated photonic devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, New York, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
    [CrossRef] [PubMed]
  4. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  5. Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
    [CrossRef]
  6. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [CrossRef]
  7. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
    [CrossRef] [PubMed]
  8. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
    [CrossRef]
  9. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [CrossRef]
  10. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
    [CrossRef]
  11. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
    [CrossRef] [PubMed]
  12. J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
    [CrossRef]
  13. R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  14. Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
    [CrossRef]
  15. R. F. Outon, V. J. Sorger, T. Zentgraf. R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature, doi: 10.1038/nature08364.
  16. L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
    [CrossRef] [PubMed]
  17. B. Ullrich, R. Schroeder, W. Graupner, and S. Sakai, “The influence of self-absorption on the photoluminescence of thin film CdS demonstrated by two-photon absorption,” Opt. Express 9(3), 116–120 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-3-116 .
    [CrossRef] [PubMed]
  18. A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
    [CrossRef] [PubMed]
  19. A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
    [CrossRef] [PubMed]
  20. A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
    [CrossRef]
  21. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]

2009 (3)

Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

2008 (7)

R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

2007 (3)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

2006 (1)

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

2005 (1)

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Chen, Z.

Chin, A. H.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Dai, T.

Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
[CrossRef] [PubMed]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Dereux, A.

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, B.

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

Fang, Z. Y.

Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Fu, Q.

Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Graupner, W.

He, P. B.

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Holmgaard, T.

Hu, J. T.

J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Huang, S.

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Jiao, L. Y.

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

Krasavin, A. V.

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Leong, E. S. P.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Lieber, C. M.

J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Lin, F.

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Liu, D.

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

Liu, R.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Liu, R. B.

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

Liu, Z. F.

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

Liu, Z. W.

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Markey, L.

Ning, C. Z.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Odom, T. W.

J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Outon, R. F.

R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Pan, A. L.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

Pile, D. F. P.

R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Sakai, S.

Schroeder, R.

Song, W. T.

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Sorger, V. J.

R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

Ullrich, B.

Wan, Q.

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

Wang, F. F.

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

Wang, X.

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Wu, Z. Y.

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Xian, X. J.

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

Zacharias, M.

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

Zayats, A. V.

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Zhang, B.

Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
[CrossRef] [PubMed]

Zhang, J.

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

Zhang, Q. L.

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

Zhang, X.

R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Zhang, X. J.

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

Zhou, W. C.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Zhu, X.

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

Zou, B. S.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

Acc. Chem. Res. (1)

J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[CrossRef] [PubMed]

J. Microsc. (1)

Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009).
[CrossRef] [PubMed]

Nano Lett. (2)

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. B (2)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
[CrossRef]

Small (1)

A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, New York, 1988).

R. F. Outon, V. J. Sorger, T. Zentgraf. R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature, doi: 10.1038/nature08364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic of experimental process.

Fig. 2
Fig. 2

(a) Far-field PL image of the CdS nanoribbon, inset is the bright field optical transmission for the same experimental area. Locations A (not shown, see text), B, C are left end, middle part and right end of the nanoribbon. (b) In situ near-field spectra recorded from locations A, B and C. (c) Schematic of the different locations illuminated by the excitation laser. (d) Guided near-field spectra with different waveguide lengths recorded by SNOM. (e) Dependence of the red-shift values and corresponding emission intensities on different waveguide lengths, with a spectroscopic jumping at the Ag experimental area.

Fig. 3
Fig. 3

(a, b) Scanning near-field optical images for subwavelength confinement, propagation and distal end emission. Inset at left corner of (b) is the topography of the nanoribbon. Inset at middle of (b) is the near-field emission image for the nanoribbon entirely placed on the Ag film. (c) The lateral intensity data (line A and line a) fitted by the Gauss curve with a FWHM of 250 nm. (d) The emission length estimated at the normal direction from the intensity distribution of line B and line b.

Fig. 4
Fig. 4

(a) Geometry of the modal simulation with electric field subwavelength confinement and propagation for the CdS nanoribbon placed on the Ag film. (b) SPP modes coupling between two parallel propagating waves, with a coupling length d c = 2 μm. (c, d) Electric field steady-state image for the plasmon modes propagate to the boundary of Ag film and beyond Ag film (on the sapphire), respectively.

Metrics