Abstract

We present a terahertz wave polarization analysis method to extract the polarization rotation angle with respect to the horizontal direction. A quartz crystal is used as the polarization analyzer with the optical axis of the crystal fixed at 45° orientation. The polarization angle of the terahertz waves generated from two-color laser-induced gas plasma is extracted by measuring the transmitted ordinary and extraordinary beams. This work demonstrates that low-absorbance birefringent materials are good candidates for terahertz polarization analysis.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, "Imaging with Terahertz Waves," Opt. Lett. 20, 1716 (1995).
    [CrossRef] [PubMed]
  2. Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys. Lett. 68, 3224 (1996).
    [CrossRef]
  3. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, "T-ray tomography," Opt. Lett. 22, 904 (1997).
    [CrossRef] [PubMed]
  4. C. Jordens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, "Terahertz birefringence for orientation analysis," Appl. Opt. 48, 2037 (2009).
    [CrossRef] [PubMed]
  5. M. Reid and R. Fedosejevs, "Terahertz birefringence and attenuation properties of wood and paper," Appl. Opt. 45, 2766 (2006).
    [CrossRef] [PubMed]
  6. C.-F. Hsieh, R.-P. Pan, T.-T Tang, H.-L. Chen, and C. -L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett. 31, 1112 (2006).
    [CrossRef] [PubMed]
  7. J.-B. Masson, and G. Gallot, "Terahertz achromatic quarter-wave plate," Opt. Lett. 31, 265 (2006).
    [CrossRef] [PubMed]
  8. H. Wen and A. M. Lindenberg, "Coherent terahertz polarization control through manipulation of electron trajectories," Phys. Rev. Lett. 103, 023902 (2009).
    [CrossRef] [PubMed]
  9. J. Dai, N. Karpowicz, and X. -C. Zhang, "Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma," Phys. Rev. Lett. 103, 023001 (2009).
    [CrossRef] [PubMed]
  10. R. Zhang, Y. Cui, W. Sun, and Y. Zhang, "Polarization information for terahertz imaging," Appl. Opt. 47, 6422 (2008).
    [CrossRef] [PubMed]
  11. J. Pearce, Z. Jian, and D. M. Mittleman, "Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses," Opt. Lett. 29, 2926 (2004).
    [CrossRef]
  12. N. C. J. van der Valk, A. M. Van der Marel, and P. C. M. Planken, "Terahertz polarization imaging," Opt. Lett. 30, 2802 (2005).
    [CrossRef] [PubMed]
  13. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Wald, "Free-standing fine-wire grids: Their manufacture, performance, and use at millimeter and submillimeter wavelengths," J. Opt. Soc. Am. 67, 979 (1977).
    [CrossRef]
  14. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, "Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe," J. Opt. Soc. Am. B 18, 313 (2001).
    [CrossRef]
  15. L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
    [CrossRef]
  16. D. Grischkowsky, S. Keiding, M. Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006 (1990).
    [CrossRef]
  17. D. J. Cook and R. M. Hochstrasser, "Intense terahertz pulses by four-wave rectification in air," Opt. Lett. 25, 1210 (2000).
    [CrossRef]
  18. X. Xie, J. Dai, and X. -C. Zhang, "Coherent control of THz wave generation in ambient air," Phys. Rev. Lett. 96, 075005 (2006).
    [CrossRef] [PubMed]
  19. J. Dai, X. Xie, and X.-C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Phys. Rev. Lett. 97, 103903 (2006).
    [CrossRef] [PubMed]
  20. J. Dai, X. Xie, and X.-C. Zhang, "Terahertz wave amplification in gases with the excitation of femtosecond laser pulses," Appl. Phys. Lett. 91, 211102 (2007).
    [CrossRef]

2009 (4)

H. Wen and A. M. Lindenberg, "Coherent terahertz polarization control through manipulation of electron trajectories," Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef] [PubMed]

J. Dai, N. Karpowicz, and X. -C. Zhang, "Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma," Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

C. Jordens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, "Terahertz birefringence for orientation analysis," Appl. Opt. 48, 2037 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

J. Dai, X. Xie, and X.-C. Zhang, "Terahertz wave amplification in gases with the excitation of femtosecond laser pulses," Appl. Phys. Lett. 91, 211102 (2007).
[CrossRef]

2006 (5)

2005 (1)

2004 (1)

2001 (1)

2000 (1)

1997 (1)

1996 (1)

Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys. Lett. 68, 3224 (1996).
[CrossRef]

1995 (1)

1990 (1)

1977 (1)

Bakker, H. J.

Boivin, L.

Campbell, P.

Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys. Lett. 68, 3224 (1996).
[CrossRef]

Chen, H.-L.

Cook, D. J.

Costley, A. E.

Cui, Y.

Dai, J.

J. Dai, N. Karpowicz, and X. -C. Zhang, "Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma," Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

J. Dai, X. Xie, and X.-C. Zhang, "Terahertz wave amplification in gases with the excitation of femtosecond laser pulses," Appl. Phys. Lett. 91, 211102 (2007).
[CrossRef]

J. Dai, X. Xie, and X.-C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Phys. Rev. Lett. 97, 103903 (2006).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. -C. Zhang, "Coherent control of THz wave generation in ambient air," Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

Deng, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Exter, M.

Fattinger, Ch.

Fedosejevs, R.

Gallot, G.

Grischkowsky, D.

Hochstrasser, R. M.

Hsieh, C.-F.

Hu, B. B.

Hunsche, S.

Hursey, K. H.

Jian, Z.

Jordens, C.

Karpowicz, N.

J. Dai, N. Karpowicz, and X. -C. Zhang, "Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma," Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

Keiding, S.

Koch, M.

Lindenberg, A. M.

H. Wen and A. M. Lindenberg, "Coherent terahertz polarization control through manipulation of electron trajectories," Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef] [PubMed]

Masson, J.-B.

Mikulics, M.

Mittleman, D. M.

Neill, G. F.

Nienhuys, H.-K.

Nuss, M. C.

Pan, C. -L.

Pan, R.-P.

Pearce, J.

Planken, P. C. M.

Reid, M.

Scheller, M.

Sun, F. G.

Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys. Lett. 68, 3224 (1996).
[CrossRef]

Sun, W.

Tang, T.-T

Van der Marel, A. M.

van der Valk, N. C. J.

Wald, J. M.

Wen, H.

H. Wen and A. M. Lindenberg, "Coherent terahertz polarization control through manipulation of electron trajectories," Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef] [PubMed]

Wenckebach, T.

Wichmann, M.

Wiesauer, K.

Wu, Q.

Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys. Lett. 68, 3224 (1996).
[CrossRef]

Xie, X.

J. Dai, X. Xie, and X.-C. Zhang, "Terahertz wave amplification in gases with the excitation of femtosecond laser pulses," Appl. Phys. Lett. 91, 211102 (2007).
[CrossRef]

J. Dai, X. Xie, and X.-C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Phys. Rev. Lett. 97, 103903 (2006).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. -C. Zhang, "Coherent control of THz wave generation in ambient air," Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

Zhang, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Zhang, L.

L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Zhang, R.

Zhang, X. -C.

J. Dai, N. Karpowicz, and X. -C. Zhang, "Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma," Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. -C. Zhang, "Coherent control of THz wave generation in ambient air," Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

Zhang, X.-C.

J. Dai, X. Xie, and X.-C. Zhang, "Terahertz wave amplification in gases with the excitation of femtosecond laser pulses," Appl. Phys. Lett. 91, 211102 (2007).
[CrossRef]

J. Dai, X. Xie, and X.-C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Phys. Rev. Lett. 97, 103903 (2006).
[CrossRef] [PubMed]

Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys. Lett. 68, 3224 (1996).
[CrossRef]

Zhang, Y.

Zhao, Y.

L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Zhong, H.

L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys. Lett. 68, 3224 (1996).
[CrossRef]

L. Zhang, H. Zhong, C. Deng, C. Zhang and Y. Zhao, "Polarization sensitive terahertz time-domain spectroscopy for birefringent materials," Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

J. Dai, X. Xie, and X.-C. Zhang, "Terahertz wave amplification in gases with the excitation of femtosecond laser pulses," Appl. Phys. Lett. 91, 211102 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (7)

Phys. Rev. Lett. (4)

X. Xie, J. Dai, and X. -C. Zhang, "Coherent control of THz wave generation in ambient air," Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

J. Dai, X. Xie, and X.-C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Phys. Rev. Lett. 97, 103903 (2006).
[CrossRef] [PubMed]

H. Wen and A. M. Lindenberg, "Coherent terahertz polarization control through manipulation of electron trajectories," Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef] [PubMed]

J. Dai, N. Karpowicz, and X. -C. Zhang, "Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma," Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Orientation illustration of incoming THz field, quartz crystal and transmitted THz field. (b) THz time-domain waveform transmitted through the birefringent material with the optical axis oriented at 45°. The inset shows the reference THz waveform without passing through the birefringent material.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup. L1-3: Lenses; P1-4: parabolic mirrors; QWP: quarter-wave plate; WP: polarizing beam splitter (wollaston prism).

Fig. 3.
Fig. 3.

THz wave peak amplitude versus relative phase of the two-color field: directly measured THz peak without passing through quartz (open dots); the first THz peak after passing through quartz (solid black); the second THz peak after passing through quartz (solid gray). The dash line indicated zero amplitude.

Fig. 4.
Fig. 4.

THz polarization rotation angle with respect to the horizontal direction versus relative phase of the two-color field, calculated using Eq. (4) (open dots) and (2) (solid dots). The dash line indicated 90° rotation angle.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔI(α)=Ipωn3êTHzr41Lccosα
α=arccos(ΔI(α)ΔImax)
êouto(t)=êin(t)sin(45°θ)cos(45°)
êoute(t)=êin(t)cos(45°θ)cos(135°)
θ=45°arctan(êoutoêoute)

Metrics