Abstract

We report a differential splitter consisting of an asymmetric double-step multimode rib waveguide and a Y-branch splitter for in-plane photonic transduction of photonic microcantilever deflection. Arrays of photonic microcantilevers are integrated with differential splitters and an optical waveguide network to demonstrate uniformity and sensitivity of transduction. Measurement results from multiple arrays indicate a sensitivity of 0.32×10−3 nm−1 and minimum detectable deflection of 141 pm for a 3.5 Hz measurement bandwidth.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
    [CrossRef] [PubMed]
  2. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
    [CrossRef] [PubMed]
  3. J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
    [CrossRef]
  4. L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004).
    [CrossRef]
  5. G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
    [CrossRef] [PubMed]
  6. M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62(8), 834–836 (1993).
    [CrossRef]
  7. M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002).
    [CrossRef]
  8. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
    [CrossRef] [PubMed]
  9. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
    [CrossRef]
  10. D. Raorane, S.-H. S. A. U. M. A. Lim, and A. Majumdar, “Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives,” Nano Lett. 8(8), 2229–2235 (2008).
    [CrossRef] [PubMed]
  11. J. W. Noh, R. Anderson, S. Kim, J. Cardenas, and G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Express 16(16), 12114–12123 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114 .
    [CrossRef] [PubMed]
  12. W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
    [CrossRef] [PubMed]
  13. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
    [CrossRef]
  14. J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002).
    [CrossRef]
  15. X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002).
    [CrossRef]
  16. R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
    [CrossRef]
  17. X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
    [CrossRef]
  18. C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” Sensors Journal, IEEE 5(3), 411–418 (2005).
    [CrossRef]
  19. V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005).
    [CrossRef]

2009 (1)

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

2008 (2)

D. Raorane, S.-H. S. A. U. M. A. Lim, and A. Majumdar, “Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives,” Nano Lett. 8(8), 2229–2235 (2008).
[CrossRef] [PubMed]

J. W. Noh, R. Anderson, S. Kim, J. Cardenas, and G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Express 16(16), 12114–12123 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114 .
[CrossRef] [PubMed]

2007 (2)

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[CrossRef] [PubMed]

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
[CrossRef]

2006 (1)

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
[CrossRef]

2005 (2)

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” Sensors Journal, IEEE 5(3), 411–418 (2005).
[CrossRef]

V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005).
[CrossRef]

2004 (3)

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004).
[CrossRef]

2003 (1)

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

2002 (3)

M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002).
[CrossRef]

J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002).
[CrossRef]

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002).
[CrossRef]

2001 (1)

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

1993 (1)

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62(8), 834–836 (1993).
[CrossRef]

1986 (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Adams, J. D.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Anderson, R.

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

J. W. Noh, R. Anderson, S. Kim, J. Cardenas, and G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Express 16(16), 12114–12123 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114 .
[CrossRef] [PubMed]

Aydinli, A.

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” Sensors Journal, IEEE 5(3), 411–418 (2005).
[CrossRef]

Baller, M. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Barrett, R. C.

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62(8), 834–836 (1993).
[CrossRef]

Bauer, C.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Beaulieu, L. Y.

V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005).
[CrossRef]

Binnig, G.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Boisen, A.

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002).
[CrossRef]

Busto, V. J. C.

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
[CrossRef]

Cardenas, J.

Cote, R. J.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

Craighead, H. G.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[CrossRef] [PubMed]

Datar, R. H.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

Datskos, P.

M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002).
[CrossRef]

Datskos, P. G.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Delinger, W. G.

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

Dominguez, C.

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
[CrossRef]

Dufour, I.

L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004).
[CrossRef]

Fadel, L.

L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004).
[CrossRef]

Ferrell, T. L.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Francais, O.

L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004).
[CrossRef]

Fritz, J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Gerber, C.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Gimzewski, J. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Godin, M.

V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005).
[CrossRef]

Grutter, P.

V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005).
[CrossRef]

Gunter, R. L.

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

Güntherodt, H.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Hansen, K. M.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

Hansen, O.

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002).
[CrossRef]

Hu, W.

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

Jones, M.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Kim, S.

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

J. W. Noh, R. Anderson, S. Kim, J. Cardenas, and G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Express 16(16), 12114–12123 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114 .
[CrossRef] [PubMed]

Kocabas, C.

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” Sensors Journal, IEEE 5(3), 411–418 (2005).
[CrossRef]

Kooser, A.

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

Lang, H. P.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Lavrik, N.

M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002).
[CrossRef]

Lavrik, N. V.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Lechuga, L. M.

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
[CrossRef]

Li, T.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
[CrossRef]

Lim, S.-H. S. A. U. M. A.

D. Raorane, S.-H. S. A. U. M. A. Lim, and A. Majumdar, “Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives,” Nano Lett. 8(8), 2229–2235 (2008).
[CrossRef] [PubMed]

Lochon, F.

L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004).
[CrossRef]

Majumdar, A.

D. Raorane, S.-H. S. A. U. M. A. Lim, and A. Majumdar, “Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives,” Nano Lett. 8(8), 2229–2235 (2008).
[CrossRef] [PubMed]

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

Manning, L.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Manygoats, K.

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

McCorkle, D.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Menon, A.

J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002).
[CrossRef]

Meyer, E.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Noh, J. W.

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

J. W. Noh, R. Anderson, S. Kim, J. Cardenas, and G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Express 16(16), 12114–12123 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114 .
[CrossRef] [PubMed]

Nordin, G. P.

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

J. W. Noh, R. Anderson, S. Kim, J. Cardenas, and G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Express 16(16), 12114–12123 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114 .
[CrossRef] [PubMed]

Parrott, G.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Plaza, J. A.

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
[CrossRef]

Porter, T. L.

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

Qian, Y.

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

Quate, C. F.

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62(8), 834–836 (1993).
[CrossRef]

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Raorane, D.

D. Raorane, S.-H. S. A. U. M. A. Lim, and A. Majumdar, “Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives,” Nano Lett. 8(8), 2229–2235 (2008).
[CrossRef] [PubMed]

Rogers, B.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Rothuizen, H.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Sant, T.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

Sepaniak, M.

M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002).
[CrossRef]

Sepaniak, M. J.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Song, J.

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

Tabard-Cossa, V.

V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005).
[CrossRef]

Tang, Y.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
[CrossRef]

Thaysen, J.

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002).
[CrossRef]

J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002).
[CrossRef]

Thundat, T.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

Tipple, C.

M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002).
[CrossRef]

Tortonese, M.

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62(8), 834–836 (1993).
[CrossRef]

Vettiger, P.

J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002).
[CrossRef]

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Waggoner, P. S.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[CrossRef] [PubMed]

Wang, W.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
[CrossRef]

Wu, G.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

Yal inkaya, A. D.

J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002).
[CrossRef]

Yu, X.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
[CrossRef]

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002).
[CrossRef]

Zhang, H.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
[CrossRef]

Zhine, R.

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

Zinoviev, K.

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
[CrossRef]

Anal. Chem. (1)

M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003).
[CrossRef]

M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62(8), 834–836 (1993).
[CrossRef]

J. Appl. Phys. (1)

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002).
[CrossRef]

J. Micromech. Microeng. (1)

L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002).
[CrossRef]

Lab Chip (1)

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[CrossRef] [PubMed]

Lightwave Technology, Journalism (1)

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006).
[CrossRef]

Nano Lett. (1)

D. Raorane, S.-H. S. A. U. M. A. Lim, and A. Majumdar, “Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives,” Nano Lett. 8(8), 2229–2235 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009).
[CrossRef] [PubMed]

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Science (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005).
[CrossRef]

Sensors Journal, IEEE (3)

R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004).
[CrossRef]

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007).
[CrossRef]

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” Sensors Journal, IEEE 5(3), 411–418 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic illustration of in-plane all-photonic microcantilever transduction structure based on a differential splitter composed of an asymmetric double-step multimode rib waveguide and Y-branch splitter. Two microcantilevers in an array are shown. (b) Cross section of the double-step rib waveguide. Dashed regions indicate the etched area from the initial multimode rib waveguide. Buried oxide layer thickness is 3 μm and the remaining silicon layer thickness is 0.55 μm.

Fig. 2
Fig. 2

(a) Normalized P1 and P2 output powers (left axis) and contrast of the differential signal (right axis) for selected lengths as a function of the length of the double-step rib waveguide. (b) Normalized output power and (c) differential signal as a function of deflection for a 17 μm long double-step rib waveguide.

Fig. 3
Fig. 3

(a) Schematic layout of an 8-microcantilever array with associated Y-branch input splitter network. Each fabricated die includes two such structures. SEM images of (b) an 8-microcantilever array with SU8 bending patches on the top half of the array, (c) a photonic microcantilever that is 110 μm long and 45 μm wide, and (d) a double-step rib waveguide differential splitter.

Fig. 4
Fig. 4

Measured individual (a) P1 and (b) P2 output powers as a function of deflection for Sets 1 and 2. Corresponding (c) differential and (d) scaled differential signals as a function of deflection.

Fig. 5
Fig. 5

Comparison of measured data with simulation results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η=P2P1P2+P1,
ηscaled=P2αP1P2+αP1.
δη=2α(P2+P1)2P22δP12+P12δP22P1P2δP1δP2r12,

Metrics