Abstract

Holographic optical tweezers typically require microscope objectives with high numerical aperture and thus usually suffer from the disadvantage of a small field of view and a small working distance. We experimentally investigate an optical mirror trap that is created after reflection of two holographically shaped collinear beams on a mirror. This approach combines a large field of view and a large working distance with the possibility to manipulate particles in a large size range, since it allows to use a microscope objective with a numerical aperture as low as 0.2. In this work we demonstrate robust optical three-dimensional trapping in a range of 1 mm×1 mm×2 mm with particle sizes ranging from 1.4 µm up to 45 µm. The use of spatial light modulator based holographic methods to create the trapping beams allows to simultaneously trap many beads in complex, dynamic configurations. We present measurements that characterize the mirror traps in terms of trap stiffness, maximum trapping force and capture range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11(5), 288 (1986).
    [CrossRef]
  2. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24(4), 156 (1970).
    [CrossRef]
  3. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  4. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
    [CrossRef]
  5. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20(7), 1568-1574 (2003).
    [CrossRef]
  6. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Express 14(12), 5779-5791 (2006).
    [CrossRef]
  7. D. G. Grier, "A revolution in optical manipulation," Nature 424(6950), 810-816 (2003).
    [CrossRef]
  8. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, "Multiple-beam optical tweezers generated by the generalized phase-contrast method," Opt. Lett. 27(4), 267-269 (2002).
    [CrossRef]
  9. J. S. Dam, P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, "Fully automated beam-alignment and single stroke guided manual alignment of counter-propagating multi-beam based optical micromanipulation systems," Opt. Express 15(13), 7968-7973 (2007).
    [CrossRef]
  10. S. Zwick, L. He, M. Warber, T. Haist, and W. Osten, "Holografisch generierte Doppelfallen f¨ur dreidimensionales Trapping," in DGaO-Proceedings (2007).
  11. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).
  12. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, "Full phase and amplitude control of holographic optical tweezers with high efficiency," Opt. Express 16(7), 4479-4486 (2008).
    [CrossRef]
  13. A. Jesacher, A. Schwaighofer, S. F¨urhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007).
    [CrossRef]
  14. J. A. Davis and D. M. Cottrell, "Random mask encoding of multiplexed phase-only and binary phase-only filters," Opt. Lett. 19(7), 496-498 (1994).
    [CrossRef]
  15. R. D. Leonardo, F. Ianni, and G. Ruocco, "Computer generation of optimal holograms for optical trap arrays," Opt. Express 15(4), 1913-1922 (2007).
    [CrossRef]
  16. W. Singer, S. Bernet, and M. Ritsch-Marte, "3D-Force Calibration of Optical Tweezers for Mechanical Stimulation of Surfactant-Releasing Lung Cells," Laser Phys. 11(11), 1217-1223 (2001).
  17. P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, "Three-dimensional forces in GPC-based counterpropagating-beam traps," Opt. Express 14(12), 5812-5822 (2006).
    [CrossRef]

2009 (1)

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

2008 (1)

2007 (3)

2006 (2)

2003 (2)

2002 (1)

2001 (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

W. Singer, S. Bernet, and M. Ritsch-Marte, "3D-Force Calibration of Optical Tweezers for Mechanical Stimulation of Surfactant-Releasing Lung Cells," Laser Phys. 11(11), 1217-1223 (2001).

1994 (1)

1993 (1)

1986 (1)

1970 (1)

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24(4), 156 (1970).
[CrossRef]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

Ashkin, A.

Bernet, S.

Bjorkholm, J. E.

Chu, S.

Constable, A.

Cottrell, D. M.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

Dam, J. S.

Davis, J. A.

Dholakia, K.

Dziedzic, J. M.

Eriksen, R. L.

F¨urhapter, S.

Frick, M.

Garcés-Chávez, V.

Glückstad, J.

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424(6950), 810-816 (2003).
[CrossRef]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

Haist, T.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

He, L.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

Hermerschmidt, A.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

Herrington, C. S.

Ianni, F.

Jesacher, A.

Jess, P. R. T.

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

Kim, J.

Leonardo, R. D.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

Maurer, C.

Mazilu, M.

Mervis, J.

Miyamoto, Y.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

Mogensen, P. C.

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

Osten, W.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

Paterson, L.

Perch-Nielsen, I. R.

Prentiss, M.

Riches, A.

Ritsch-Marte, M.

Rodrigo, P. J.

Ruocco, G.

Schwaighofer, A.

Sibbett, W.

Singer, W.

W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20(7), 1568-1574 (2003).
[CrossRef]

W. Singer, S. Bernet, and M. Ritsch-Marte, "3D-Force Calibration of Optical Tweezers for Mechanical Stimulation of Surfactant-Releasing Lung Cells," Laser Phys. 11(11), 1217-1223 (2001).

Smith, D.

Warber, M.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

Zarinetchi, F.

Zwick, S.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001).
[CrossRef]

J. Opt. A (1)

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

W. Singer, S. Bernet, and M. Ritsch-Marte, "3D-Force Calibration of Optical Tweezers for Mechanical Stimulation of Surfactant-Releasing Lung Cells," Laser Phys. 11(11), 1217-1223 (2001).

Nature (1)

D. G. Grier, "A revolution in optical manipulation," Nature 424(6950), 810-816 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24(4), 156 (1970).
[CrossRef]

Other (1)

S. Zwick, L. He, M. Warber, T. Haist, and W. Osten, "Holografisch generierte Doppelfallen f¨ur dreidimensionales Trapping," in DGaO-Proceedings (2007).

Supplementary Material (2)

» Media 1: AVI (1895 KB)     
» Media 2: AVI (1395 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup. A reflective SLM which is illuminated with a Gaussian laser beam creates multiple trapping beams. A telescope consisting of two lenses (f 1=300mm, f 2=150mm) decreases the beam size to match the back aperture size of the microscope objective. This objective (Zeiss Ultrafluar 10, NA=0.2) images two beams into the probe chamber creating the mirror trap which consists of 2 foci, one formed before the mirror and one after reflection. The inset shows a magnified view of the mirror trap light configuration. For imaging purposes we overlap broadband visible light on the trapping beams and observe the light passing through the dichroic mirror on top of the probe chamber.

Fig. 2.
Fig. 2.

Sketch of trap geometry. (a) If the central plane between both foci of a mirror trap (thick dashed line) lies on the surface of the mirror, then after reflection of one of the beams both foci coincide at a distance z tr from the mirror. (b) Shifting the central plane away from the mirror surface by an amount d s, the foci are separated by distance 2d s, whereas the trap center still is at a distance z tr from the mirror.

Fig. 3.
Fig. 3.

Theoretical calculations of axial forces of a mirror trap resulting from the intensity at the beam axis in dependence of the axial position, i.e., the distance from the mirror. The Rayleigh length of both beams is 74 µm, the bead diameter is assumed to be 1.4 µm. The three subplots show the results for different focus separations 2ds : (a) 50 µm, (b) 190 µm and (c) 310 µm. The blue and cyan lines show the forces induced by the incoming and the retro-reflected beam, respectively, the former acting negatively, i.e., in direction towards the mirror, the latter positively, and the red line shows the sum of the two. The force near the equilibrium position at 400 µm distance from the mirror is approximated linearly by the black dashed line.

Fig. 4.
Fig. 4.

Demonstration of lateral and axial displacement of the mirror trap for a 4.5 µm bead. On the left we see the initial position with two beads caught in two traps, in the middle the trap on the right was moved laterally by several bead diameters, and on the right it was moved in axial direction, in both cases by changing the SLM pattern (Media1)(see movie road-movie.avi). Furthermore throughout the whole scene we repeatedly moved the microscope stage to demonstrate that the beads are trapped.

Fig. 5.
Fig. 5.

Simultaneous trapping of 20 microspheres (diameter is 4.5 µm) in a star-shaped pattern (indicated by red lines) with optical mirror traps. The field of view corresponds to 500 µm in x-direction, the trapping distance from the mirror is 150 µm. The power per trap is approximately 10 mW. Both images are taken from the beginning and the end of a movie during which the microscope stage was moved to show that the beads can indeed be transported collectively (Media2) (see movie star-movie.avi).

Fig. 6.
Fig. 6.

Measurement of trapping forces in axial direction. (a) The position of a bead (blue dots), measured from the fringe locations (see inset), approaches the final equilibrium position with an exponential time dependence (black line). (b) Calculation of the velocity yields the position-dependent trapping force. In the observed axial range of ±50µm around the equilibrium position the force scales linearly with the axial position. The slope gives an axial trap stiffness of 0.025 pN/µm. (c) With increasing axial separation of the foci the trap stiffness decreases. Experimental parameters: bead diameter 2.8 µm, trap distance z tr=400µm, trap power 50mW.

Fig. 7.
Fig. 7.

Lateral force versus bead displacement for different bead sizes. The thick red line is a smoothing average of the raw data (blue dots) to remove the noise due to the Brownian motion. The settings for these measurements were: (a) bead diameter 2.8µm, trap power 50 mW, trap distance z tr=425 µm, separation of foci 2d s≈360 µm (b) bead diameter 4.5 µm, trap power 40 mW, trap distance z tr=1200 µm, separation of foci 2d s≈470 µm (c) bead diameter 20 µm, trap power 40 mW, trap distance z tr=1200 µm, separation of foci 2d s≈260 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ i ( r ) = kr 2 2 f i ,
z tr = n f 0 1 + f m 2 f 0 n m 2 f 0 2 f ,

Metrics