Abstract

We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00-1444) are used to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band-gap fibre,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
  2. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
    [PubMed]
  3. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  4. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  5. F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [CrossRef]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
    [CrossRef]
  7. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
    [CrossRef]
  8. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable Highly Birefringent Bandgap-Guiding Liquid-Crystal Microstructured Fibers,” J. Lightwave Technol. 24(9), 3427–3432 (2006).
    [CrossRef]
  9. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S. T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45(10), 2261–2264 (2006).
    [CrossRef] [PubMed]
  10. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
    [CrossRef]
  11. J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
    [CrossRef]
  12. M. C. J. Large, L. Poladian, G. Barton, and M. Eijkelenborg, Microstructured polymer optical fibres, (Springer, 2008).
  13. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
    [CrossRef] [PubMed]
  14. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
    [CrossRef]
  15. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [CrossRef] [PubMed]
  16. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber: Erratum,” Opt. Lett. 32(9), 1059 (2007).
    [CrossRef]
  17. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  18. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers,” Opt. Lett. 32(2), 109–111 (2007).
    [CrossRef]
  19. M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
    [CrossRef]
  20. R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
    [CrossRef]
  21. A. Argyros, M. A. van Eijkelenborg, M. C. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31(2), 172–174 (2006).
    [CrossRef] [PubMed]
  22. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [CrossRef] [PubMed]
  23. M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
    [CrossRef]
  24. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  25. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002).
    [CrossRef]
  26. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
    [CrossRef] [PubMed]
  27. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  28. J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
    [CrossRef] [PubMed]

2009

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
[CrossRef]

M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
[CrossRef]

2007

2006

2005

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

2004

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

2003

2002

2001

Adam, A. J. L.

Alkeskjold, T. T.

T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S. T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45(10), 2261–2264 (2006).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

Anawati, A.

Argyros, A.

Bachmann, A.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

Bang, O.

Barton, G.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

Bassett, I.

Bassett, I. M.

Bjarklev, A.

Broeng, J.

Cox, F. M.

Dabrowski, R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

de Sterke, C.

de Sterke, C. M.

Domanski, A. W.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Dubois, C.

Dunn, S.

Dupuis, A.

Eggleton, B.

Eggleton, B. J.

Emiliyanov, G.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Ertman, S.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Fleming, S.

Frampton, K.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Frosz, M. H.

M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
[CrossRef]

Gao, Y.

Gauza, S.

Gauzia, S.

Godbout, N.

Guo, N.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Harvey, J.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

Harvey, L.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

Henry, G.

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

Hermann, D.

Hermann, D. S.

Hewak, D. W.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Hirst, D.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

Hlubina, P.

M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
[CrossRef]

Hoiby, P.

Hoiby, P. E.

Issa, N. A.

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Jensen, J.

Jensen, J. B.

Jepsen, P. U.

Joannopoulos, J. D.

Johnson, S. G.

Kerbage, C.

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Kjaer, E. M.

Klein, K. F.

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

Klein, K.-F.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

Kriezis, E. E.

Kuhlmey, B. T.

Lacroix, S.

Laegsgaard, J.

Lægsgaard, J.

Large, M. C.

Large, M. C. J.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Larsen, T. T.

Lesiak, P.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Li, J.

Lindvold, L.

Litchinitser, N.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Lwin, R.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

Manos, S.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Martijn de Sterke, C.

McPhedran, R.

McPhedran, R. C.

Monro, T. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Moore, R.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Nicorovici, N. A. P.

Nielsen, K.

M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Pedersen, L.

Pedersen, L. H.

Planken, P. C. M.

Poisel, H.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

Pok, W.

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

Poladian, L.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

Rasmussen, H. K.

Richardson, D. J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Rutt, H. N.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Scolari, L.

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Skorobogatiy, M.

Stefani, A.

M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
[CrossRef]

Steinvurzel, P.

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Tsiboukis, T. D.

Tucknott, J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

van Eijkelenborg, M. A.

White, T.

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Wu, S. T.

Wu, S.-T.

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[CrossRef] [PubMed]

Zagari, J.

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Zografopoulos, D. C.

Appl. Opt.

Appl. Phys. Lett.

F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91(19), 191119 (2007).
[CrossRef]

Electron. Lett.

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

M. A. van Eijkelenborg, A. Argyros, A. Bachmann, G. Barton, M. C. J. Large, G. Henry, N. A. Issa, K. F. Klein, H. Poisel, W. Pok, L. Poladian, S. Manos, and J. Zagari, “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electron. Lett. 40(10), 592–593 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

Meas. Sci. Technol.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Opt. Express

C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
[PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[CrossRef] [PubMed]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

M. H. Frosz, andK. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proc. SPIE 7357, 735705 (2009).
[CrossRef]

Other

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band-gap fibre,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.

M. C. J. Large, L. Poladian, G. Barton, and M. Eijkelenborg, Microstructured polymer optical fibres, (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized transmission spectrum of a 60cm long PMMA mPOF. The insets show a microscope image of the fiber end facet before and after the fiber is pumped with a supercontinuum broadband light source.

Fig. 2
Fig. 2

Polarized microscope images of LC filled PMMA capillaries showing the interfaces between the filled and unfilled sections inside the capillary with orientation of 0° and 45°, respectively. (a-b) E7 infiltrated capillary, (c-d) MDA-00-1444 infiltrated capillary. The blue and colorful parts in (b) and (d) are the LC filled sections of the capillaries. All images are recorded by the microscope with two crossed polarizers.

Fig. 3
Fig. 3

Normalized transmission spectrum of the PMMA mPOF after infiltration with E7 for a length of 1cm. Modal cut-off wavelengths at 25°C are indicated with vertical lines.

Fig. 4
Fig. 4

Normalized transmission spectra of an E7 infiltrated mPOF for different temperatures from 25°C to 50°C. Insets show microscope images of the guided light of the E7 infiltrated mPOF at the indicated temperatures. The vertical line marks the calculated cut-off wavelength of the guided HE31 mode at T=25 °C.

Fig. 5
Fig. 5

Transmission spectra of the MDA-00-1444 infiltrated mPOF at temperatures 25°C, 40°C, and 60°C. All spectra are normalized to the transmission spectrum of the same unfilled mPOF. The microscope images of the inset show the colour variation of the guided light at different temperatures. The vertical lines mark the calculated cut-off wavelengths of the modes of the corresponding high-index inclusion at T=25 °C.

Metrics