Abstract

Experimental investigations of microstructured fibers filled with liquid crystals (LCs) have so far been performed only by using host fibers made of the silica glass. In this paper, the host photonic crystal fiber (PCF) was made of the PBG08 high-refractive index glass (~1.95) that is much higher than silica glass index (~1.46) and also higher then both ordinary and extraordinary refractive indices of the majority of LCs. As a result, low-loss and index-guiding propagation is observed regardless of the LC molecules orientation. Attenuation of the host PCF was measured to be ~0.15 dB/cm and for the PCF infiltrated with 5CB LC was slightly higher (~0.19 dB/cm), resulting in a significant reduction to ~0.04 dB/cm of the scattering losses caused by the LC. Moreover, an external transverse electric field applied to the effective photonic liquid crystal fiber (PLCF) allowed for continuous phase birefringence tuning from 0 to 2·10−4.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  2. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002)
  3. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
    [CrossRef]
  4. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  5. T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).
  6. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
    [CrossRef] [PubMed]
  7. M. Y. Jeon and J. H. Kim, “Transmission Characteristics in Liquid-Crystal-Infiltrated Photonic Crystal Fibers,” Jpn. J. Appl. Phys. 47(No. 4), 2174–2175 (2008).
    [CrossRef]
  8. Q. Lu and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2005).
  9. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
    [CrossRef]
  10. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
    [CrossRef]
  11. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
    [CrossRef] [PubMed]
  12. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
    [CrossRef]
  13. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  14. V. K. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
    [PubMed]
  15. L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
    [CrossRef] [PubMed]
  16. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
    [CrossRef] [PubMed]
  17. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
    [CrossRef]
  18. T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
    [CrossRef]
  19. S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
    [CrossRef]
  20. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
    [CrossRef] [PubMed]
  21. C. Kerbage and B. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
    [PubMed]
  22. C. Zhang, G. Kai, Z. Wang, Y. Liu, T. Sun, S. Yuan, and X. Dong, “Tunable highly birefringent photonic bandgap fibers,” Opt. Lett. 30(20), 2703–2705 (2005).
    [CrossRef] [PubMed]
  23. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express 14(2), 914–925 (2006).
    [CrossRef] [PubMed]
  24. J. Sun and C. C. Chan, “Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers,” Opt. Lett. 32(14), 1989–1991 (2007).
    [CrossRef] [PubMed]
  25. G. Tartarini, M. Pansera, T. Tanggaard Alkeskjold, A. Bjarklev, and P. Bassi,“Polarization Properties of Elliptical-Hole Liquid Crystal Photonic Bandgap Fibers,” J. Lightwave Technol. 25(9), 2522–2530 (2007).
    [CrossRef]
  26. G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-Dependent Bandgap Splitting and Mode Guiding in Liquid Crystal Photonic Bandgap Fibers,” J. Lightwave Technol. 26(22), 3650–3659 (2008).
    [CrossRef]
  27. S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).
  28. D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
    [CrossRef]
  29. J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [CrossRef]
  30. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
    [CrossRef]
  31. S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
    [CrossRef]

2009

L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
[CrossRef] [PubMed]

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).

2008

2007

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
[CrossRef] [PubMed]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

J. Sun and C. C. Chan, “Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers,” Opt. Lett. 32(14), 1989–1991 (2007).
[CrossRef] [PubMed]

G. Tartarini, M. Pansera, T. Tanggaard Alkeskjold, A. Bjarklev, and P. Bassi,“Polarization Properties of Elliptical-Hole Liquid Crystal Photonic Bandgap Fibers,” J. Lightwave Technol. 25(9), 2522–2530 (2007).
[CrossRef]

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

2006

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express 14(2), 914–925 (2006).
[CrossRef] [PubMed]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

2005

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Q. Lu and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2005).

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

C. Zhang, G. Kai, Z. Wang, Y. Liu, T. Sun, S. Yuan, and X. Dong, “Tunable highly birefringent photonic bandgap fibers,” Opt. Lett. 30(20), 2703–2705 (2005).
[CrossRef] [PubMed]

2004

2003

2002

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

C. Kerbage and B. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
[PubMed]

2000

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Alkeskjold, T.

Alkeskjold, T. T.

Anawati, A.

Aranyosiova, M.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Bartelt, H.

Bassi, P.

Bjarklev, A.

L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
[CrossRef] [PubMed]

G. Tartarini, M. Pansera, T. Tanggaard Alkeskjold, A. Bjarklev, and P. Bassi,“Polarization Properties of Elliptical-Hole Liquid Crystal Photonic Bandgap Fibers,” J. Lightwave Technol. 25(9), 2522–2530 (2007).
[CrossRef]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Bondarczuk, K.

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Broeng, J.

Buczynski, R.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Bugar, I.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Chan, C. C.

Czapla, A.

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

Dabrowski, R.

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Dolinski, M.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Domanski, A. W.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Dong, X.

Du, J.

Eggleton, B.

Eggleton, B. J.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Ertman, S.

S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Eskildsen, L.

Gauza, S.

Gong, Y.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Hermann, D.

Hsiao, V. K.

Hu, J.

Jeon, M. Y.

M. Y. Jeon and J. H. Kim, “Transmission Characteristics in Liquid-Crystal-Infiltrated Photonic Crystal Fibers,” Jpn. J. Appl. Phys. 47(No. 4), 2174–2175 (2008).
[CrossRef]

Kai, G.

Kerbage, C.

C. Kerbage and B. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
[PubMed]

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Kim, J. H.

M. Y. Jeon and J. H. Kim, “Transmission Characteristics in Liquid-Crystal-Infiltrated Photonic Crystal Fibers,” Jpn. J. Appl. Phys. 47(No. 4), 2174–2175 (2008).
[CrossRef]

Kitzerow, H.-S.

Ko, C.-Y.

Kobelke, J.

Kriezis, E. E.

Lægsgaard, J.

Larsen, T.

Lesiak, P.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Li, J.

Liu, B.

Liu, Y.

Lorenc, D.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Lorenz, A.

Lu, Q.

Q. Lu and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2005).

Mach, P.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Nasilowski, T.

S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

Nielsen, M.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Nowecka, K.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

Nowinowski-Kruszelnicki, E.

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Pansera, M.

Ren, G.

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

Rogers, J. A.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Russell, P. St. J.

Schwuchow, A.

Scolari, L.

Shum, P.

Stepien, R.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Sun, J.

Sun, T.

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Tanggaard Alkeskjold, T.

Tartarini, G.

Tefelska, M.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Thienpont, H.

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).

Tsiboukis, T. D.

Velic, D.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Vincze, A.

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Wang, Z.

Wei, L.

Weirich, J.

Windeler, R. S.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Wójcik, J.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

Wolinski, T. R.

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Wu, S. T.

Q. Lu and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2005).

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[CrossRef]

Wu, S.-T.

Xianyu, H.

Yu, X.

Yuan, S.

Zhai, L.

Zhang, C.

Zografopoulos, D. C.

Zou, B.

Appl. Opt.

Appl. Phys. B: Lasers Opt

D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008).
[CrossRef]

Appl. Phys. Lett.

Q. Lu and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2005).

IEEE Photon. Technol. Lett.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

J. Appl. Phys.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

M. Y. Jeon and J. H. Kim, “Transmission Characteristics in Liquid-Crystal-Infiltrated Photonic Crystal Fibers,” Jpn. J. Appl. Phys. 47(No. 4), 2174–2175 (2008).
[CrossRef]

Meas. Sci. Technol.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Opt. Commun.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Opt. Express

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

V. K. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
[PubMed]

L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
[CrossRef] [PubMed]

C. Kerbage and B. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
[PubMed]

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express 14(2), 914–925 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Opto-Electronics Rev.

T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).

Opto-Electronics Review

S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009).
[CrossRef]

Photon. Lett. of Poland

S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).

Proc. SPIE

S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007).
[CrossRef]

Other

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

a) Cross section of the PCF14(6) microstructured fiber: the diameter of the fiber is 125.4 μm, the holes diameter is 5.2 μm and the pitch between holes is 7.6 μm; b) dispersion characteristics of the PBG08 glass (material used to fabricate PCF14(6)) and refractive indices of the LCs used in the experiment. The silica-glass refractive index is also presented for a comparison.

Fig. 2
Fig. 2

LC molecules orientations discussed in a theoretical model and corresponding components of dielectric permittivity tensor ε = [εxxyyzz]: a) planar, b) transverse, c) tilted

Fig. 3
Fig. 3

Numerical simulations of the phase birefringence tuning in the PCF14(6) filled with 5CB induced by collective tilt of the LC molecules. For planar orientation of LC molecules (φ = 0°) fiber is isotropic (non-birefringent).

Fig. 4
Fig. 4

Comparison of the birefringence tuning ranges in PCF14(6) filled with three different liquid crystals 5CB, 1679 and 1658A characterized by different value of an extraordinary refractive index (since for the planar orientation of LC molecules the birefringence of fiber is equal to 0, the tuning range is adequate to the birefringence obtained at the transverse orientation of the LC molecules)

Fig. 5
Fig. 5

Central part of the PCF14(6) cross section (a) and calculated mode profiles for X- and Y-polarized modes (b, c) for PCF14(6) filled with 5CB with transverse molecules orientation (φ = 90°) – mode profile is almost the same in whole tuning range.

Fig. 6
Fig. 6

Modes guided in the PCF14(6) fiber: a) fundamental mode; b) second-order mode; c) third-order mode; d) highly attenuated fourth order mode.

Fig. 7
Fig. 7

Attenuation measurement of the empty PCF14(6) and the PCF filled with 5CB – attenuation was find as slope coefficients of the 10 log P(x) functions- for the empty PCF it is ~0.15 dB/cm, and ~0.19 dB/cm for the PCF filled with 5CB.

Fig. 8
Fig. 8

Experimental setup used in birefringence tuning measurements.

Fig. 9
Fig. 9

Electrically induced changes in the state of polarization (SOP) of the PCF14(6) filled with (a) 5CB; (b) 1679; (c) 1658A. Any continuous change in SOP indicates appropriate continuous change in fiber birefringence (measured at 1600nm, frequency of steering voltage fixed to 1 kHz)

Fig. 11
Fig. 11

Phase birefringence tuning at selected wavelengths in the PCF14(6) filled with 1679.

Fig. 10
Fig. 10

Phase birefringence tuning at selected wavelengths in the PCF14(6) filled with 5CB

Fig. 12
Fig. 12

Phase birefringence tuning at selected wavelengths in the PCF14(6) filled with 1658A.

Fig. 13
Fig. 13

Comparison of phase birefringence tuning at 1640nm in the PCF14(6) filled with 5CB, 1679 and 1658A. The tuning range is proportional to birefringences of the liquid crystals used: (Δn5CB ≈0.2) < (Δn1679 ≈0.3) < (Δn1658A ≈0.38)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A=1x10log(P(x)P(0))
10logP(x)=Ax+10logP(0)
δϕ=2πλBL
Δδϕ(E)=2πλLEΔB(E)
ΔB(E)=Δδϕ(E)2πλLE

Metrics