Abstract

An integral imaging system enabling extended depth of field was proposed and demonstrated based on a birefringence lens array (BLA) whose focal length was switched via the light polarization. The lens array system was constructed by combining two different liquid crystal(LC) embedded lens arrays, BLA I and II, which were fabricated by injecting a ZLI-4119 LC and an E-7 LC in between a lens array substrate and an ITO (indium-tin-oxide) glass plate respectively. The BLA I played a role as a convex lens only for the polarization parallel to the ordinary axis of the corresponding LC, but it serves as a plain medium for that along its extraordinary one since the refractive indexes of the lens and the LC are almost identical. Meanwhile, the BLA II played a role as a concave lens only for the polarization parallel to the extraordinary axis of the LC but as a plain medium for that along its ordinary one. As a result, the focal length could be switched via the polarization, and it was measured to be 680 mm and −29 mm. For the proposed system with the prepared BLAs, both real and virtual three-dimensional (3D) images were efficiently reconstructed at the positions of z=1300 mm and z=−30 mm with no significant degradation in the resolution, indicating its depth of field range.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographic intergrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58(1), 71–76 (1968).
    [CrossRef]
  3. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
    [CrossRef]
  4. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [CrossRef]
  5. J.-S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002).
    [CrossRef]
  6. S. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [CrossRef] [PubMed]
  7. Y. S. Hwang, S. Hong, and B. Javidi, “Free view 3D visualization of occluded objects by using computational synthetic aperture integral imaging,” IEEE/OSA J. Disp. Tech. 3(1), 64–70 (2007).
    [CrossRef]
  8. Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41(26), 5488–5496 (2002).
    [CrossRef] [PubMed]
  9. B. Javidi, R. Ponce-Díaz, and S. H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31(8), 1106–1108 (2006).
    [CrossRef] [PubMed]
  10. S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14(25), 12085–12095 (2006).
    [CrossRef] [PubMed]
  11. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
    [CrossRef]
  12. Y. S. Hwang, T. H. Yoon, and J. C. Kim, “Design and fabrication of variable focusing lens arrays using liquid crystal for integral photography,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6434–6438 (2003).
    [CrossRef]
  13. Y. Kim, J. H. Park, H. Choi, J. Kim, S. W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45(18), 4334–4343 (2006).
    [CrossRef] [PubMed]
  14. J. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
    [CrossRef] [PubMed]
  15. Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46(18), 3766–3773 (2007).
    [CrossRef] [PubMed]
  16. J. Lee, S. Kim, and E. Kim, “Reconstruction of a three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. SPIE 6695, 669519–669527 (2007).
    [CrossRef]

2007 (3)

Y. S. Hwang, S. Hong, and B. Javidi, “Free view 3D visualization of occluded objects by using computational synthetic aperture integral imaging,” IEEE/OSA J. Disp. Tech. 3(1), 64–70 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46(18), 3766–3773 (2007).
[CrossRef] [PubMed]

J. Lee, S. Kim, and E. Kim, “Reconstruction of a three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. SPIE 6695, 669519–669527 (2007).
[CrossRef]

2006 (3)

2004 (1)

2003 (2)

J. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
[CrossRef] [PubMed]

Y. S. Hwang, T. H. Yoon, and J. C. Kim, “Design and fabrication of variable focusing lens arrays using liquid crystal for integral photography,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6434–6438 (2003).
[CrossRef]

2002 (2)

2001 (1)

1999 (1)

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

1998 (1)

1968 (1)

1908 (1)

G. Lippmann, “La photographic intergrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Arai, J.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

Arimoto, H.

Burckhardt, C. B.

Cho, S. W.

Cho, S.-W.

Choi, H.

Frauel, Y.

Hong, S.

Y. S. Hwang, S. Hong, and B. Javidi, “Free view 3D visualization of occluded objects by using computational synthetic aperture integral imaging,” IEEE/OSA J. Disp. Tech. 3(1), 64–70 (2007).
[CrossRef]

S. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[CrossRef] [PubMed]

Hong, S. H.

Hoshino, H.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
[CrossRef]

Hwang, Y. S.

Y. S. Hwang, S. Hong, and B. Javidi, “Free view 3D visualization of occluded objects by using computational synthetic aperture integral imaging,” IEEE/OSA J. Disp. Tech. 3(1), 64–70 (2007).
[CrossRef]

Y. S. Hwang, T. H. Yoon, and J. C. Kim, “Design and fabrication of variable focusing lens arrays using liquid crystal for integral photography,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6434–6438 (2003).
[CrossRef]

Isono, H.

Jang, J.-S.

Javidi, B.

Jung, S.

Kim, E.

J. Lee, S. Kim, and E. Kim, “Reconstruction of a three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. SPIE 6695, 669519–669527 (2007).
[CrossRef]

Kim, J.

Kim, J. C.

Y. S. Hwang, T. H. Yoon, and J. C. Kim, “Design and fabrication of variable focusing lens arrays using liquid crystal for integral photography,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6434–6438 (2003).
[CrossRef]

Kim, S.

J. Lee, S. Kim, and E. Kim, “Reconstruction of a three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. SPIE 6695, 669519–669527 (2007).
[CrossRef]

Kim, Y.

Lee, B.

Lee, J.

J. Lee, S. Kim, and E. Kim, “Reconstruction of a three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. SPIE 6695, 669519–669527 (2007).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographic intergrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Okano, F.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
[CrossRef]

Park, G.

Park, J.

Park, J. H.

Ponce-Díaz, R.

Yoon, T. H.

Y. S. Hwang, T. H. Yoon, and J. C. Kim, “Design and fabrication of variable focusing lens arrays using liquid crystal for integral photography,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6434–6438 (2003).
[CrossRef]

Yuyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
[CrossRef]

Appl. Opt. (3)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographic intergrale,” C. R. Acad. Sci. 146, 446–451 (1908).

IEEE/OSA J. Disp. Tech. (1)

Y. S. Hwang, S. Hong, and B. Javidi, “Free view 3D visualization of occluded objects by using computational synthetic aperture integral imaging,” IEEE/OSA J. Disp. Tech. 3(1), 64–70 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. S. Hwang, T. H. Yoon, and J. C. Kim, “Design and fabrication of variable focusing lens arrays using liquid crystal for integral photography,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6434–6438 (2003).
[CrossRef]

Opt. Eng. (1)

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

J. Lee, S. Kim, and E. Kim, “Reconstruction of a three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. SPIE 6695, 669519–669527 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of an InIm system and its operation.

Fig. 2
Fig. 2

Proposed InIm system using a BLA with polarization selective focal lengths.

Fig. 3
Fig. 3

Propagation of rays through a pair of cascaded BLAs. Here z=0 corresponds to the position at the top of ITO glass plate of either BLA I or BLA II.

Fig. 4
Fig. 4

Detailed structure of a unit element of the proposed BLA.

Fig. 5
Fig. 5

Performance of a conventional InIm system with a plain lens array (a) elemental image of the two objects (b) reconstructed image at z=9 mm (c) reconstructed image at z=30 mm.

Fig. 6
Fig. 6

Measurement of the focal length of the fabricated BLA I (a) the test setup (b) the image of a focused spot at z=680 mm for the polarization along the ordinary axis (c) the image of a collimated beam for the polarization along the extraordinary axis.

Fig. 7
Fig. 7

Setup for the reconstruction of a 3D object.

Fig. 8
Fig. 8

Elemental images to be used for (a) the real reconstruction (b) the virtual reconstruction.

Fig. 9
Fig. 9

Reconstructed 3D images of an object for the case of (a) the conventional glass lens array (at z=600 mm) (b) the proposed BLA I at z = 130 cm (c) the proposed BLA II at z = −3 cm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1g+1Li=1fifori=1or2
fi=1(nlinp)Cwherei=1or2andnli(θ)=noineinoi2sin2θ+nei2cos2θ.
Δzi=(d/W)fifori=1or2

Metrics