Abstract

In this paper, we present novel designs and analysis of ultra-compact couplers and 1 × 2 splitters based on plasmonic waveguides. Numerical simulation shows coupling efficiency up to 88% for the former one and 45% for each branch for the latter one. The proposed coupler design has the advantages of improving the alignment tolerance of the plasmonic waveguide with respect to the dielectric waveguide and broadening the spectrum response of the splitter.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004).
    [CrossRef]
  3. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  4. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
    [CrossRef]
  5. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
    [CrossRef]
  6. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
    [CrossRef] [PubMed]
  7. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007).
    [CrossRef] [PubMed]
  8. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
    [CrossRef]
  9. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Express 31, 3288–3290 (2006).
  10. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
    [CrossRef] [PubMed]
  11. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
    [CrossRef]
  12. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
    [CrossRef]
  13. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005).
    [CrossRef]
  14. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  15. B. Wang and G. P. Wang, “Surface Plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Express 29, 1992–1994 (2004).
  16. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface Plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
    [CrossRef]
  17. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Inerferometers,” Opt. Commun. (to be published).
  18. A. Taflove, Computational Electrodynamics (Artech, Norwood, MA, 1995).
  19. J. P. Berenger, “A perfectly matched layer for the absorption for electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  20. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient couplers and splitters from dielectric waveguides to plasmonic waveguides”, in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FThS4. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2008-FThS4

2007

2006

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface Plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Express 31, 3288–3290 (2006).

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[CrossRef]

2005

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005).
[CrossRef]

2004

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Surface Plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Express 29, 1992–1994 (2004).

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1999

1998

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[CrossRef]

1994

J. P. Berenger, “A perfectly matched layer for the absorption for electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

1969

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Abushagur, M. A. G.

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Inerferometers,” Opt. Commun. (to be published).

Arbel, D.

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Express 31, 3288–3290 (2006).

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption for electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Berini, P.

Boroditsky, M.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[CrossRef]

Breukelaar, I.

Brongersma, M. L.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004).
[CrossRef]

Catrysse, P. B.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004).
[CrossRef]

Charbonneau, R.

Coccioli, R.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Fafard, S.

Fan, S.

Forsberg, E.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface Plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Ginzburg, P.

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007).
[CrossRef] [PubMed]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Express 31, 3288–3290 (2006).

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Han, Z.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface Plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Haus, H. A.

Jensen, J. S.

Joannopoulos, J. D.

Johnson, S. G.

Kim, K. W.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[CrossRef]

Lahoud, N.

Liu, L.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface Plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Lu, Z.

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Inerferometers,” Opt. Commun. (to be published).

Manolatou, C.

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Mattiussi, G.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Orenstein, M.

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007).
[CrossRef] [PubMed]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Express 31, 3288–3290 (2006).

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[CrossRef]

Scales, C.

Selker, M. D.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004).
[CrossRef]

Sigmund, O.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Veronis, G.

Villeneuve, P. R.

Wahsheh, R. A.

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Inerferometers,” Opt. Commun. (to be published).

Wang, B.

B. Wang and G. P. Wang, “Surface Plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Express 29, 1992–1994 (2004).

Wang, G. P.

B. Wang and G. P. Wang, “Surface Plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Express 29, 1992–1994 (2004).

Yablonovitch, E.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[CrossRef]

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004).
[CrossRef]

Appl. Phys. Lett.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

IEE Proc., Optoelectron.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, “A perfectly matched layer for the absorption for electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface Plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Inerferometers,” Opt. Commun. (to be published).

Opt. Express

Phys. Rev.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Other

A. Taflove, Computational Electrodynamics (Artech, Norwood, MA, 1995).

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient couplers and splitters from dielectric waveguides to plasmonic waveguides”, in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FThS4. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2008-FThS4

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the basic proposed coupler (top view). (b) Coupling efficiency as a function of the coupler’s width W and length L. (c) Field distribution of the coupled light at λo = 1.55 µm for the air-gap coupler.

Fig. 2
Fig. 2

Coupling efficiency for the basic structure [Fig. 1(c)] as a function of the dielectric waveguide’s width.

Fig. 3
Fig. 3

(a) Schematic of the position misalignment d1 between the silicon waveguide and the plasmonic waveguide with the AGC connected to it. (b) Coupling efficiency as a function of d1 . (c) Field distribution for the structure shown in Fig. 3(a) when d1 = 150 nm.

Fig. 4
Fig. 4

(a) Schematic of the position misalignment d2 between the silicon waveguide with the AGC connected to it and the plasmonic waveguide. (b) Coupling efficiency as a function of d2 . (c) Field distribution for the structure shown in Fig. 4(a) when d2 = 170 nm.

Fig. 5
Fig. 5

The electric field distribution when (a) the width of the AGC does not match that of the silicon waveguide, (b) the width of the AGC matches that of the silicon waveguide and the MDM waveguide is at the center, and (c) the width of the AGC matches that of silicon waveguide and the MDM waveguide is not at the center.

Fig. 6
Fig. 6

(a) Schematic of the splitter structure without the air-gap coupler. (b) Coupling efficiency as a function of the separation distance g1 . (c) Field distribution for the structure shown in Fig. 6(a) for g1 = 160 nm.

Fig. 7
Fig. 7

(a) Schematic of the splitter structure with the air-gap coupler. (b) Coupling efficiency as a function of the separation distance g2 . (c) Field distribution for the structure shown in Fig. 7(a) for g2 = 260 nm.

Fig. 8
Fig. 8

(a) Schematic of the asymmetric splitter structure. (b) Coupling efficiency as a function of the displacement D2 . (c) Field distribution for D2 = 150 nm.

Fig. 9
Fig. 9

(a) Schematic of the asymmetric splitter structure. (b) Coupling efficiency as a function of W2 . (c) Field distribution for W2 = 100 nm and W1 = 40 nm.

Fig. 10
Fig. 10

Spectrum of the structures shown in Fig. 1(c) (with and without the AGC) and Figs. 5(c) and 6(c).

Metrics