Abstract

In femtosecond stimulated Raman microscopy (FSRM) a spectrally broad pulse (Raman probe) and a spectrally narrow pulse (Raman pump) interact in a sample and thereby generate a Raman spectrum of the focal volume. Here a novel light source for FSRM is presented. It consists of an 8-fs laser (repetition rate of 75 MHz) operating as Raman probe. A Yb3+ based fiber amplifier generates the Raman pump light at 980 nm. The amplifier is seeded by the spectral wing of the 8-fs laser output which ensures synchronisation of pump and probe pulses. Spectral and temporal characteristics of these pulses are reported and simultaneous recording of broadband Raman spectra relying on these pulses is demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Turrell and J. Corset, eds., Raman microscopy developments and applications (Academic Press, San Diego, 1996).
  2. M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
    [CrossRef]
  3. I. Notingher and L. L. Hench, "Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro," Expert Rev. Med. Devices 3(2), 215-234 (2006).
    [CrossRef]
  4. B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
    [CrossRef]
  5. C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
    [CrossRef]
  6. M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
    [CrossRef]
  7. D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
    [CrossRef]
  8. J. Dong and Y. Ozaki, "FTIR and FT-Raman studies of partially miscible poly(methyl methacrylate)/poly(4-vinylphenol) blends in solid states," Macromolecules 30(2), 286-292 (1997).
    [CrossRef]
  9. B. von Vacano, L. Meyer, and M. Motzkus, "Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38(7), 916-926 (2007).
    [CrossRef]
  10. J. Koenig and J. Bobiak, "Raman and infrared imaging of dynamic polymer systems," Macromol. Mater. Eng. 292(7), 801-816 (2007).
    [CrossRef]
  11. A. Zumbusch, G. Holtom, and X. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999).
    [CrossRef]
  12. J. Cheng and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827-840 (2004).
    [CrossRef]
  13. A. Volkmer, "Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy," J. Phys. D-applied Phys. 38(5), R59-R81 (2005).
    [CrossRef]
  14. M. Müller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. PhysChem. 8(15), 2157-2170 (2007).
  15. C. Evans and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemical Imaging for Biology and Medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
    [CrossRef]
  16. A. Penzkofer, A. Laubereau, and W. Kaiser, "High-intensity Raman interactions," Prog. Quantum Electron. 6(2), 56-140 (1979).
  17. J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001).
    [CrossRef]
  18. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
    [CrossRef]
  19. M. Yoshizawa and M. Kurosawa, "Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering," Phys. Rev. A 61, 013808 (2000).
    [CrossRef]
  20. P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007).
    [CrossRef]
  21. D. McCamant, P. Kukura, and R. Mathies, "Femtosecond broadband stimulated Raman: A new approach for high-performance vibrational spectroscopy," Appl. Spectrosc. 57(11), 1317-1323 (2003).
    [CrossRef]
  22. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005).
    [CrossRef]
  23. C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
    [CrossRef]
  24. P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New J. Phys. 11(3), 033026 (2009).
    [CrossRef]
  25. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, "Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy," Opt. Express 17(5), 3651-3658 (2009).
    [CrossRef]
  26. K. Kieu, B. Saar, G. Holtom, X. Xie, and F. Wise, "High-power picosecond fiber source for coherent Raman microscopy," Opt. Lett. 34(13), 2051-2053 (2009).
    [CrossRef]
  27. Q. Hao, W. Li, and H. Zeng, "High-power Yb-doped fiber amplification system synchronized with a few-cycle Ti:sapphire laser," Opt. Express 17(7), 5815-5821 (2009).
    [CrossRef]
  28. R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33(7), 1049-1056 (1997).
    [CrossRef]
  29. H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).
  30. R. Selvas, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Yla-Jarkko, S. A. Alam, P.W. Turner, and J. Moore, "High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm," Opt. Lett. 28(13), 1093-1095 (2003).
    [CrossRef]
  31. L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "977-nm all-fiber DFB laser," IEEE Photon. Technol. Lett. 16(11), 2442-2444 (2004).
    [CrossRef]
  32. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
    [CrossRef]
  33. I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
    [CrossRef]
  34. A. Savitzky and M. Golay, "Smoothing + differentiation of data by simplified least squares procedures," Anal. Chem. 36(8), 1627 (1964).
    [CrossRef]
  35. S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
    [CrossRef]
  36. S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
    [CrossRef]
  37. E. Ploetz, B. Marx, and P. Gilch, "Disturbing interference pattern in femtosecond stimulated Raman microscopy," J. Raman Spectros.in press (2009).
    [CrossRef]
  38. B. Schrader, ed., Infrared and Raman Spectroscopy (VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1995).
    [CrossRef]
  39. B. Schrader and W. Meier, eds., Raman/IR Atlas of Organic Compounds (Verlag Chemie, Weinheim, 1975).

2009 (6)

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New J. Phys. 11(3), 033026 (2009).
[CrossRef]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, "Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy," Opt. Express 17(5), 3651-3658 (2009).
[CrossRef]

K. Kieu, B. Saar, G. Holtom, X. Xie, and F. Wise, "High-power picosecond fiber source for coherent Raman microscopy," Opt. Lett. 34(13), 2051-2053 (2009).
[CrossRef]

Q. Hao, W. Li, and H. Zeng, "High-power Yb-doped fiber amplification system synchronized with a few-cycle Ti:sapphire laser," Opt. Express 17(7), 5815-5821 (2009).
[CrossRef]

E. Ploetz, B. Marx, and P. Gilch, "Disturbing interference pattern in femtosecond stimulated Raman microscopy," J. Raman Spectros.in press (2009).
[CrossRef]

2008 (3)

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
[CrossRef]

C. Evans and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemical Imaging for Biology and Medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

2007 (5)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
[CrossRef]

M. Müller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. PhysChem. 8(15), 2157-2170 (2007).

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38(7), 916-926 (2007).
[CrossRef]

J. Koenig and J. Bobiak, "Raman and infrared imaging of dynamic polymer systems," Macromol. Mater. Eng. 292(7), 801-816 (2007).
[CrossRef]

P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

2006 (3)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
[CrossRef]

I. Notingher and L. L. Hench, "Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro," Expert Rev. Med. Devices 3(2), 215-234 (2006).
[CrossRef]

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

2005 (4)

M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
[CrossRef]

A. Volkmer, "Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy," J. Phys. D-applied Phys. 38(5), R59-R81 (2005).
[CrossRef]

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005).
[CrossRef]

2004 (5)

L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "977-nm all-fiber DFB laser," IEEE Photon. Technol. Lett. 16(11), 2442-2444 (2004).
[CrossRef]

S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
[CrossRef]

I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
[CrossRef]

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
[CrossRef]

J. Cheng and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827-840 (2004).
[CrossRef]

2003 (2)

2001 (1)

J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001).
[CrossRef]

2000 (1)

M. Yoshizawa and M. Kurosawa, "Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering," Phys. Rev. A 61, 013808 (2000).
[CrossRef]

1999 (1)

A. Zumbusch, G. Holtom, and X. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999).
[CrossRef]

1997 (2)

J. Dong and Y. Ozaki, "FTIR and FT-Raman studies of partially miscible poly(methyl methacrylate)/poly(4-vinylphenol) blends in solid states," Macromolecules 30(2), 286-292 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33(7), 1049-1056 (1997).
[CrossRef]

1995 (1)

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, "High-intensity Raman interactions," Prog. Quantum Electron. 6(2), 56-140 (1979).

1964 (1)

A. Savitzky and M. Golay, "Smoothing + differentiation of data by simplified least squares procedures," Anal. Chem. 36(8), 1627 (1964).
[CrossRef]

Alam, S. A.

Bakker, T.

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

Bangma, C.

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

Barber, P.

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

Baum, P.

I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
[CrossRef]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
[CrossRef]

Billheimer, D.

C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
[CrossRef]

Bobiak, J.

J. Koenig and J. Bobiak, "Raman and infrared imaging of dynamic polymer systems," Macromol. Mater. Eng. 292(7), 801-816 (2007).
[CrossRef]

Book, L.

J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001).
[CrossRef]

Boydston-White, S.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
[CrossRef]

Bruining, H.

M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
[CrossRef]

Carman, R.

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

Cheng, J.

J. Cheng and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827-840 (2004).
[CrossRef]

J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001).
[CrossRef]

Dake, F.

Dawes, J.

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

de Jong, B.

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

Deurenberg, R.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Diem, M.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
[CrossRef]

Dong, J.

J. Dong and Y. Ozaki, "FTIR and FT-Raman studies of partially miscible poly(methyl methacrylate)/poly(4-vinylphenol) blends in solid states," Macromolecules 30(2), 286-292 (1997).
[CrossRef]

Ellis, D.

C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
[CrossRef]

Endtz, H.

M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
[CrossRef]

Evans, C.

C. Evans and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemical Imaging for Biology and Medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

Freudiger, C.

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Fu, L. B.

Fukui, K.

Gilch, P.

E. Ploetz, B. Marx, and P. Gilch, "Disturbing interference pattern in femtosecond stimulated Raman microscopy," J. Raman Spectros.in press (2009).
[CrossRef]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
[CrossRef]

Golay, M.

A. Savitzky and M. Golay, "Smoothing + differentiation of data by simplified least squares procedures," Anal. Chem. 36(8), 1627 (1964).
[CrossRef]

Grudinin, A. B.

Hanna, D.

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

Hanna, D.C.

R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33(7), 1049-1056 (1997).
[CrossRef]

Hao, Q.

He, C.

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Hench, L. L.

I. Notingher and L. L. Hench, "Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro," Expert Rev. Med. Devices 3(2), 215-234 (2006).
[CrossRef]

Holtom, G.

K. Kieu, B. Saar, G. Holtom, X. Xie, and F. Wise, "High-power picosecond fiber source for coherent Raman microscopy," Opt. Lett. 34(13), 2051-2053 (2009).
[CrossRef]

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

A. Zumbusch, G. Holtom, and X. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999).
[CrossRef]

Horst-Kreft, D.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005).
[CrossRef]

Ibelings, M.

M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
[CrossRef]

Ibsen, M.

L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "977-nm all-fiber DFB laser," IEEE Photon. Technol. Lett. 16(11), 2442-2444 (2004).
[CrossRef]

Itoh, K.

Jachtenberg, J.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Jang, J. N.

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, "High-intensity Raman interactions," Prog. Quantum Electron. 6(2), 56-140 (1979).

Kajiyama, S.

Kang, J.

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Kieu, K.

Koenig, J.

J. Koenig and J. Bobiak, "Raman and infrared imaging of dynamic polymer systems," Macromol. Mater. Eng. 292(7), 801-816 (2007).
[CrossRef]

Kok, D.

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New J. Phys. 11(3), 033026 (2009).
[CrossRef]

Kozma, I.

I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
[CrossRef]

Kukura, P.

P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
[CrossRef]

D. McCamant, P. Kukura, and R. Mathies, "Femtosecond broadband stimulated Raman: A new approach for high-performance vibrational spectroscopy," Appl. Spectrosc. 57(11), 1317-1323 (2003).
[CrossRef]

Kurosawa, M.

M. Yoshizawa and M. Kurosawa, "Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering," Phys. Rev. A 61, 013808 (2000).
[CrossRef]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
[CrossRef]

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, "High-intensity Raman interactions," Prog. Quantum Electron. 6(2), 56-140 (1979).

Lee, S.

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
[CrossRef]

Li, W.

Lieber, C.

C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
[CrossRef]

Lochbrunner, S.

I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
[CrossRef]

Lu, S.

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Mackechnie, C.

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

Mahadevan-Jansen, A.

C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
[CrossRef]

Majumder, S.

C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
[CrossRef]

Maquelin, K.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
[CrossRef]

Marx, B.

E. Ploetz, B. Marx, and P. Gilch, "Disturbing interference pattern in femtosecond stimulated Raman microscopy," J. Raman Spectros.in press (2009).
[CrossRef]

Mathies, R.

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
[CrossRef]

D. McCamant, P. Kukura, and R. Mathies, "Femtosecond broadband stimulated Raman: A new approach for high-performance vibrational spectroscopy," Appl. Spectrosc. 57(11), 1317-1323 (2003).
[CrossRef]

Mathies, R. A.

P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

Matthäus, C.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
[CrossRef]

McCamant, D.

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
[CrossRef]

D. McCamant, P. Kukura, and R. Mathies, "Femtosecond broadband stimulated Raman: A new approach for high-performance vibrational spectroscopy," Appl. Spectrosc. 57(11), 1317-1323 (2003).
[CrossRef]

McCamant, D. W.

P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38(7), 916-926 (2007).
[CrossRef]

Miljkovic, M.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
[CrossRef]

Min, W.

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Moore, J.

Motzkus, M.

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38(7), 916-926 (2007).
[CrossRef]

Müller, M.

M. Müller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. PhysChem. 8(15), 2157-2170 (2007).

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New J. Phys. 11(3), 033026 (2009).
[CrossRef]

Nilsson, J.

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005).
[CrossRef]

Notingher, I.

I. Notingher and L. L. Hench, "Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro," Expert Rev. Med. Devices 3(2), 215-234 (2006).
[CrossRef]

Ozaki, Y.

J. Dong and Y. Ozaki, "FTIR and FT-Raman studies of partially miscible poly(methyl methacrylate)/poly(4-vinylphenol) blends in solid states," Macromolecules 30(2), 286-292 (1997).
[CrossRef]

Ozeki, Y.

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33(7), 1049-1056 (1997).
[CrossRef]

Pask, H.

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

Payne, D. N.

L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "977-nm all-fiber DFB laser," IEEE Photon. Technol. Lett. 16(11), 2442-2444 (2004).
[CrossRef]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, "High-intensity Raman interactions," Prog. Quantum Electron. 6(2), 56-140 (1979).

Ploetz, E.

E. Ploetz, B. Marx, and P. Gilch, "Disturbing interference pattern in femtosecond stimulated Raman microscopy," J. Raman Spectros.in press (2009).
[CrossRef]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
[CrossRef]

Puppels, G.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
[CrossRef]

Richardson, D. J.

L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "977-nm all-fiber DFB laser," IEEE Photon. Technol. Lett. 16(11), 2442-2444 (2004).
[CrossRef]

Riedle, E.

I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
[CrossRef]

Romeo, M.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
[CrossRef]

Saar, B.

K. Kieu, B. Saar, G. Holtom, X. Xie, and F. Wise, "High-power picosecond fiber source for coherent Raman microscopy," Opt. Lett. 34(13), 2051-2053 (2009).
[CrossRef]

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Sahu, J. K.

Savitzky, A.

A. Savitzky and M. Golay, "Smoothing + differentiation of data by simplified least squares procedures," Anal. Chem. 36(8), 1627 (1964).
[CrossRef]

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
[CrossRef]

Schmidhammer, U.

I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
[CrossRef]

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
[CrossRef]

Scholtes-Timmerman, M.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Schut, T.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Selvas, R.

Tropper, A.

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

Tropper, A.C.

R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33(7), 1049-1056 (1997).
[CrossRef]

Tsai, J.

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Turner, P.W.

van Belkum, A.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

van der Kwast, T.

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

van Leeuwen, W.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005).
[CrossRef]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New J. Phys. 11(3), 033026 (2009).
[CrossRef]

A. Volkmer, "Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy," J. Phys. D-applied Phys. 38(5), R59-R81 (2005).
[CrossRef]

J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001).
[CrossRef]

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38(7), 916-926 (2007).
[CrossRef]

Vos, M.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Willemse-Erix, D.

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

Wise, F.

Xie, X.

K. Kieu, B. Saar, G. Holtom, X. Xie, and F. Wise, "High-power picosecond fiber source for coherent Raman microscopy," Opt. Lett. 34(13), 2051-2053 (2009).
[CrossRef]

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

C. Evans and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemical Imaging for Biology and Medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

J. Cheng and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827-840 (2004).
[CrossRef]

J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001).
[CrossRef]

A. Zumbusch, G. Holtom, and X. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999).
[CrossRef]

Yla-Jarkko, K. H.

Yoon, S.

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

Yoshizawa, M.

M. Yoshizawa and M. Kurosawa, "Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering," Phys. Rev. A 61, 013808 (2000).
[CrossRef]

Zeng, H.

Zhang, D.

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
[CrossRef]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
[CrossRef]

Zumbusch, A.

M. Müller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. PhysChem. 8(15), 2157-2170 (2007).

A. Zumbusch, G. Holtom, and X. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999).
[CrossRef]

Anal. Chem. (2)

B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006).
[CrossRef]

A. Savitzky and M. Golay, "Smoothing + differentiation of data by simplified least squares procedures," Anal. Chem. 36(8), 1627 (1964).
[CrossRef]

Analyst (1)

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

C. Evans and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemical Imaging for Biology and Medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

Appl. Phys. B - Lasers Opt. (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007).
[CrossRef]

Appl. Phys. B-Lasers Opt. (2)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Chem. PhysChem. (1)

M. Müller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. PhysChem. 8(15), 2157-2170 (2007).

Clin. Microbiol. Infect. (1)

M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005).
[CrossRef]

Expert Rev. Med. Devices (1)

I. Notingher and L. L. Hench, "Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro," Expert Rev. Med. Devices 3(2), 215-234 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33(7), 1049-1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).

IEEE Photon. Technol. Lett. (1)

L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "977-nm all-fiber DFB laser," IEEE Photon. Technol. Lett. 16(11), 2442-2444 (2004).
[CrossRef]

J. Biomed. Opt. (1)

C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008).
[CrossRef]

J. Chem. Phys. (2)

S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004).
[CrossRef]

S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005).
[CrossRef]

J. Clin. Microbiol. (1)

D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009).
[CrossRef]

J. Phys. Chem. B (2)

J. Cheng and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827-840 (2004).
[CrossRef]

J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001).
[CrossRef]

J. Phys. D-applied Phys. (1)

A. Volkmer, "Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy," J. Phys. D-applied Phys. 38(5), R59-R81 (2005).
[CrossRef]

J. Raman Spectros. (1)

E. Ploetz, B. Marx, and P. Gilch, "Disturbing interference pattern in femtosecond stimulated Raman microscopy," J. Raman Spectros.in press (2009).
[CrossRef]

J. Raman Spectrosc. (1)

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38(7), 916-926 (2007).
[CrossRef]

Macromol. Mater. Eng. (1)

J. Koenig and J. Bobiak, "Raman and infrared imaging of dynamic polymer systems," Macromol. Mater. Eng. 292(7), 801-816 (2007).
[CrossRef]

Macromolecules (1)

J. Dong and Y. Ozaki, "FTIR and FT-Raman studies of partially miscible poly(methyl methacrylate)/poly(4-vinylphenol) blends in solid states," Macromolecules 30(2), 286-292 (1997).
[CrossRef]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New J. Phys. 11(3), 033026 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

M. Yoshizawa and M. Kurosawa, "Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering," Phys. Rev. A 61, 013808 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

A. Zumbusch, G. Holtom, and X. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999).
[CrossRef]

Prog. Quantum Electron. (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, "High-intensity Raman interactions," Prog. Quantum Electron. 6(2), 56-140 (1979).

Rev. Sci. Instrum. (1)

I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004).
[CrossRef]

Science (1)

C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008).
[CrossRef]

Other (3)

B. Schrader, ed., Infrared and Raman Spectroscopy (VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1995).
[CrossRef]

B. Schrader and W. Meier, eds., Raman/IR Atlas of Organic Compounds (Verlag Chemie, Weinheim, 1975).

G. Turrell and J. Corset, eds., Raman microscopy developments and applications (Academic Press, San Diego, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the FSRS effect. Two laser pulses, an intense spectrally narrow pulse (Raman pump, red, frequency ω 0) and a spectrally broad pulse (Raman probe, blue), interact with a Raman active medium. For frequency components ωc >ω 0 (anti-Stokes side) satisfying the Raman condition stimulated Raman interactions lead to attenuations of the Raman probe spectrum. Referencing the modified probe spectrum to the original one affords the Raman spectrum of the medium.

Fig. 2.
Fig. 2.

Schematic of the FSRM setup. For description see text. Dichroitic mirror: DM1,2, C: Collimator, SMF: single mode fiber, ISO: optical isolator, LD: pump laser diode, WDM: wavelength division multiplexer, Yb3+: ytterbium-doped fiber, PD: photo diode, DGC: delay generator card, GW: glass wedge, OB: microscope objective.

Fig. 3.
Fig. 3.

(a) Spectra of Raman pump (solid) and probe pulses (dashed). Due to the spectral position of the Raman pump pulse and the width of the probe pulse Raman shifts of up to 4000 cm-1 can be covered. (b) Oscilloscope trace of the pump pulse train. Its repetition rate matches the one of the 8 fs laser. The offset of this trace is due to ASE.The temporal properties of the Raman pump and probe pulses were characterised using an autocorrelator similar in design to one described in ref. [33]. The autocorrelation traces (Fig. 4) afforded durations — based on a Gaussian deconvolution — of 14 fs and 1.2 ps for probe and pump pulses, respectively. Since the pulses have passed 1.4 m of air when they are measured they are already stretched from the 8 fs specified by the manufacturer to 14 fs. The duration of the pump pulse is 4 times the duration of a bandwidth limited pulse. This chirp results from the group velocity dispersion (GVD) the pulses experience while propagating through the fiber. An estimate based on the Sellmeier coefficients of fused silica and the waveguide dispersion yields a GVD at 980 nm of ~50 ps/(nm km). The Raman pump pulse has a bandwidth of 5 nm and propagates through 4 m of fiber. This results in a duration of ~1 ps as seen in the experiment.

Fig. 4.
Fig. 4.

Autocorrelation traces of Raman pump (open squares, lower axis applies) and probe pulses (solid circles, upper axis applies). The solid lines symbolise Gaussian fits. The deconvoluted duration of the probe pulse amounts to 14 fs, that of the pump to 1.2 ps.

Fig. 5.
Fig. 5.

(Stimulated) Raman spectra of benzonitrile recorded with the setup described in Fig. 2. For spectrum (a) the lowest possible acquisition time of 2 ms (1 ms pump on/off) was chosen. Spectrum (b) was obtained from (a) by applying Savitzky-Golay smoothing. For spectrum (c) the acquisition time was 10 ms, no smoothing was applied.

Fig. 6.
Fig. 6.

(Stimulated) Raman spectra of water. The acquisition time was 20 ms, Savitzky-Golay smoothing was applied. The spectrum shows that with the present light source even modes with the largest Raman shifts can be addressed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R (ωc-ωο)=1 IprRP(ωc-ωο)Ipr(ωc-ωο)

Metrics