Abstract

A solid-state-laser based single-frequency 589 nm light source that can be easily used in the laboratory is needed for sodium spectroscopy studies and cold sodium atom experiments. This paper shows that by using a periodically poled Zn-doped LiNbO3 ridge waveguide for sum-frequency generation, we can obtain a high conversion efficiency to 589 nm light from two sub-watt 1064 and 1319 nm Nd:YAG lasers via a simple single pass wavelength conversion process without employing an enhancement cavity. A 494 mW light at 589 nm is generated and achieves overall conversion efficiency from the laser power of 41%. Excellent long-term stability of output power is obtained and its standard deviation is characterized to be 0.09%.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Moosmüller and J. D. Vance, “Sum-frequency generation of continuous-wave sodium D(2) resonance radiation,” Opt. Lett. 22(15), 1135–1137 (1997).
    [CrossRef] [PubMed]
  2. J. D. Vance, C.-Y. She, and H. Moosmüller, “Continuous-wave, all-solid-state, single-frequency 400-mw source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37(21), 4891–4896 (1998).
    [CrossRef]
  3. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28(22), 2219–2221 (2003).
    [CrossRef] [PubMed]
  4. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
    [CrossRef]
  5. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
    [CrossRef] [PubMed]
  6. N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
    [CrossRef]
  7. J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F1–61021F9 (2006).
  8. E. Mimoun, L. De Sarlo, J.-J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16(23), 18684–18691 (2008).
    [CrossRef]
  9. J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, “Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate,” Opt. Lett. 34(7), 1093–1095 (2009).
    [CrossRef] [PubMed]
  10. L. Taylor, A. Friedenauer, V. Protopopov, Y. Feng, D. B. Calia, V. Karpov, W. Hackenberg, R. Holzlöhner, W. Clements, M. Hager, F. Lison, and W. Kaenders, “20 W at 589 nm via frequency doubling of coherently beam combined 2-MHz 1178-nm CW signals amplified in Raman PM Fiber Amplifiers,” in The European Conference on Lasers and Electro-Optics and The European Quantum Electronics Conference, Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2009), paper PDA.7.
  11. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
    [CrossRef]
  12. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [CrossRef]
  13. W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
    [CrossRef] [PubMed]
  14. R. Wynands, O. Coste, C. Rembe, and D. Meschede, “How accurate is optical second-harmonic generation?” Opt. Lett. 20(10), 1095 (1995).
    [CrossRef] [PubMed]
  15. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, and A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17(3), 1652–1659 (2009).
    [CrossRef] [PubMed]
  16. M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
    [CrossRef]
  17. NTT. Electronics, http://www.nel-world.com .

2009 (2)

2008 (2)

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

E. Mimoun, L. De Sarlo, J.-J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16(23), 18684–18691 (2008).
[CrossRef]

2005 (2)

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[CrossRef] [PubMed]

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

2004 (1)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

2003 (2)

J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28(22), 2219–2221 (2003).
[CrossRef] [PubMed]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[CrossRef]

2001 (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1993 (1)

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[CrossRef] [PubMed]

Acott, P. E.

Akagawa, K.

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Asobe, M.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[CrossRef]

Bienfang, J. C.

Coste, O.

Dalibard, J.

Davis, K. B.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[CrossRef] [PubMed]

De Sarlo, L.

Denman, C. A.

Dronov, A. G.

Fejer, M. M.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Feng, Y.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Gapontsev, V. P.

Georgiev, D.

Gerbier, F.

Grime, B. W.

Hayano, Y.

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

Hillman, P. D.

Hong, F.-L.

Hosaka, K.

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Inaba, H.

Iye, M.

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

Joffe, M. A.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[CrossRef] [PubMed]

Kawahara, T. D.

Ketterle, W.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[CrossRef] [PubMed]

Kitamura, K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Martin, A.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[CrossRef] [PubMed]

Meschede, D.

Mimoun, E.

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[CrossRef]

Moore, G. T.

Moosmüller, H.

Nishida, Y.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[CrossRef]

Onae, A.

Popov, S. V.

Pritchard, D. E.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[CrossRef] [PubMed]

Rembe, C.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Rulkov, A. B.

Saito, N.

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

Saito, Y.

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

She, C.-Y.

Shirakawa, A.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Suzuki, H.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[CrossRef]

Tadanaga, O.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[CrossRef]

Takami, H.

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

Taylor, J. R.

Telle, J. M.

Ueda, K.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Umeki, T.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

Vance, J. D.

Vyatkin, M. Y.

Wada, S.

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

Williams, B. P.

Wynands, R.

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

Yasuda, M.

Yue, J.

Zondy, J.-J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Electron. Lett. (2)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[CrossRef] [PubMed]

Other (3)

NTT. Electronics, http://www.nel-world.com .

L. Taylor, A. Friedenauer, V. Protopopov, Y. Feng, D. B. Calia, V. Karpov, W. Hackenberg, R. Holzlöhner, W. Clements, M. Hager, F. Lison, and W. Kaenders, “20 W at 589 nm via frequency doubling of coherently beam combined 2-MHz 1178-nm CW signals amplified in Raman PM Fiber Amplifiers,” in The European Conference on Lasers and Electro-Optics and The European Quantum Electronics Conference, Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2009), paper PDA.7.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F1–61021F9 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Periodically poled Zn:LiNbO3 ridge waveguide. (a) Cross-sectional scanning electron microscope image of fabricated ridge waveguide. (b) Photograph of PPLN module.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Temperature dependence of the SFG output power.

Fig. 4
Fig. 4

1319 nm coupled power dependence of (a) 589 nm generated power and (b) coupled photon conversion efficiency when the 1064 nm coupled power was fixed at 360 mW.

Fig. 5
Fig. 5

1064 nm coupled power dependence of (a) 589 nm generated power and (b) coupled photon conversion efficiency when the 1319 nm coupled power was fixed at 242 mW.

Fig. 6
Fig. 6

Pump power dependence of (a) 589 nm generated power and (b) coupled photon conversion efficiency and normalized SFG efficiency. The input pump power changes while the power ratio of the 1064 nm light and 1319 nm light is maintained at 1.24:1.

Fig. 7
Fig. 7

Long-term stability of 589 nm output power. The blue line shows the room temperature and the orange line shows the 589-nm power.

Fig. 8
Fig. 8

Transverse mode profile of the output beam.

Tables (1)

Tables Icon

Table 1 Summary of solid-state-laser based CW 589 nm light generation

Metrics