Abstract

An adaptive liquid lens actuated by a photo-polymer is demonstrated. The lens cell consists of a top glass substrate and a bottom plastic slab with two holes: reservoir hole and lens hole, which are sealed with elastic membranes. A photo-sensitive polymer is attached to the membrane of the reservoir hole. Under blue light irradiation, the polymer is bent which exerts a pressure to regulate the curvature of the membrane on the lens hole and then change the focal length of the plano-convex lens. The focal length is tunable from infinity to 21.2 mm in seconds. Non-mechanical driving, easy integration with other optical components and compact system are the key features of this lens.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Sugiura and S. Morita, “Variable-focus liquid-filled optics lens,” Appl. Opt. 32(22), 4181–4186 (1993).
    [CrossRef] [PubMed]
  2. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
    [CrossRef] [PubMed]
  3. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [CrossRef] [PubMed]
  4. C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
    [CrossRef]
  5. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
    [CrossRef] [PubMed]
  6. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  7. M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
    [CrossRef]
  8. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [CrossRef] [PubMed]
  9. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]
  10. S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [CrossRef]
  11. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [CrossRef] [PubMed]
  12. C. S. Liu and P. D. Lin, “Miniaturized auto-focusing VCM actuator with zero holding current,” Opt. Express 17(12), 9754–9763 (2009).
    [CrossRef] [PubMed]
  13. H. M. Son, M. Y. Kim, and Y. J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express 17(16), 14339–14350 (2009).
    [CrossRef] [PubMed]
  14. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
    [CrossRef] [PubMed]
  15. X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
    [CrossRef]
  16. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
    [CrossRef] [PubMed]
  17. Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
    [CrossRef] [PubMed]
  18. S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Azobenzene liquid crystal polymer-based membrane and cantilever optical systems,” Opt. Express 17(18), 15736–15746 (2009).
    [CrossRef] [PubMed]
  19. N. Tabiryan, S. Serak, X. M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
    [CrossRef] [PubMed]
  20. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [CrossRef]
  21. M. Liu and Q. Chen, ““Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications,” J. Micro/Nanolith,” J. Micro/Nanolith. MEMS MOEMS 6, 012008 (2007).
    [CrossRef]
  22. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

2009

2008

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[CrossRef]

2007

M. Liu and Q. Chen, ““Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications,” J. Micro/Nanolith,” J. Micro/Nanolith. MEMS MOEMS 6, 012008 (2007).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[CrossRef] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

2006

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

2005

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

N. Tabiryan, S. Serak, X. M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
[CrossRef] [PubMed]

2004

2003

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

2001

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[CrossRef] [PubMed]

2000

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

1996

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

1993

1971

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Bauer, J. M.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

Berge, B.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Bunning, T.

Bunning, T. J.

Chen, Q.

M. Liu and Q. Chen, ““Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications,” J. Micro/Nanolith,” J. Micro/Nanolith. MEMS MOEMS 6, 012008 (2007).
[CrossRef]

Cheng, C. C.

Chronis, N.

Dai, X. M.

De Nicola, S.

Devadoss, C.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Ferraro, P.

Finizio, A.

Finkelmann, H.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[CrossRef] [PubMed]

Grilli, S.

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Hirsa, A. H.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

Ikeda, T.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

Jeong, K. H.

Jiang, H.

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[CrossRef]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Jo, B. H.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

Kim, M. Y.

Lee, C. C.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

Lee, L. P.

Lee, Y. J.

Lin, P. D.

Lin, Y. J.

Liu, C. S.

Liu, G. L.

Liu, M.

M. Liu and Q. Chen, ““Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications,” J. Micro/Nanolith,” J. Micro/Nanolith. MEMS MOEMS 6, 012008 (2007).
[CrossRef]

Liu, R. H.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

López, C. A.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

Miccio, L.

Moore, J. S.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

Morita, S.

Murali, S.

Nakano, M.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

Nishikawa, E.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[CrossRef] [PubMed]

Paturzo, M.

Pereira, G. G.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[CrossRef] [PubMed]

Ren, H.

Reza, S.

S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Riza, N. A.

S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Rolland, J. P.

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Serak, S.

Serak, S. V.

Son, H. M.

Sugiura, N.

Tabiryan, N.

Tabiryan, N. V.

Thompson, K. P.

Vallet, M.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Vespini, V.

Volvelle, L.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Warner, M.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[CrossRef] [PubMed]

White, T. J.

Wu, S. T.

Xu, S.

Yeh, J. A.

Yu, Q.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

Yu, Y.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

Zeng, X.

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[CrossRef]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

MEMS MOEMS

M. Liu and Q. Chen, ““Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications,” J. Micro/Nanolith,” J. Micro/Nanolith. MEMS MOEMS 6, 012008 (2007).
[CrossRef]

Nature

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[CrossRef] [PubMed]

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

Opt. Commun.

S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Opt. Express

K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[CrossRef] [PubMed]

N. Tabiryan, S. Serak, X. M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[CrossRef] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
[CrossRef] [PubMed]

C. S. Liu and P. D. Lin, “Miniaturized auto-focusing VCM actuator with zero holding current,” Opt. Express 17(12), 9754–9763 (2009).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

H. M. Son, M. Y. Kim, and Y. J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express 17(16), 14339–14350 (2009).
[CrossRef] [PubMed]

S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Azobenzene liquid crystal polymer-based membrane and cantilever optical systems,” Opt. Express 17(18), 15736–15746 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[CrossRef] [PubMed]

Polymer (Guildf.)

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Other

S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Supplementary Material (2)

» Media 1: MOV (1511 KB)     
» Media 2: MOV (1702 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental geometry and the effect of laser-induced LC reorientation: (a) Bending away from the laser beam when E⊥n, and (b) Bending towards when E‖n.

Fig. 2
Fig. 2

Structure of a tunable lens actuated by photo-polymer: (a) Top glass slab, (b) Bottom glass slab, side view of the lens cell in (c) non-focusing and (d) focusing states.

Fig. 3
Fig. 3

(a) Deformation of the photo-polymer under blue laser irradiation (Media 1), and (b) Experimental setup for the actuation of the membrane liquid lens.

Fig. 4
Fig. 4

(a) Liquid lens at non-focusing state, (b) Liquid lens at a focusing state, and (c) Measured focal length of the lens at different power densities.

Fig. 5
Fig. 5

(a) Tunable liquid lens system, (b) On state and off state of a TN LC cell, and (c) Bi-directional bending of the polymer film using a TN cell (Media 2).

Metrics