Abstract

The interest towards passive control of the light polarization through nonlinear effects has been stimulated by recent works: in particular a polarization pulling effect has been obtained by means of stimulated Brillouin scattering. Here we investigate the condition for obtaining polarization pulling by exploiting the stimulated Raman scattering, which is most suitable for optical communications thanks to its large gain bandwidth. The role of the polarization-dependent Raman amplification and of the random fiber birefringence is clarified by theoretical considerations and numerical simulations starting from the vector theory of the Raman effect in optical fiber. Experiments carried out with a 1571-nm signal and high-power 1486-nm pump evidence the Raman-induced polarization pulling.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Oswald and C. K. Madsen, "Deterministic analysis of endless tuning of polarization controllers," J. Lightwave Technol. 24, 2932-2939 (2006).
    [CrossRef]
  2. M. Martinelli, P. Martelli, and S. M. Pietralunga, "Polarization stabilization in optical communications systems," J. Lightwave Technol. 24, 4172-4183 (2006).
    [CrossRef]
  3. B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
    [CrossRef]
  4. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, "Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling," Opt. Lett. 25, 257-259 (2000).
    [CrossRef]
  5. S. Pitois, A. Sauter, and G. Millot, "Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers," Opt. Lett. 29, 599-601 (2004).
    [CrossRef] [PubMed]
  6. S. Pitois, J. Fatome, and G. Millot, "Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths," Opt. Express 16, 6646-6651 (2008).
    [CrossRef] [PubMed]
  7. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, "All-optical polarization control through Brillouin amplification," in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.
  8. M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
    [CrossRef]
  9. J. Bromage, "Raman amplification for fiber communications systems," J. Lightwave Technol. 22, 79-93 (2004).
    [CrossRef]
  10. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1159 (1979).
    [CrossRef]
  11. R. Hellwarth, J. Cherlow, and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1975).
    [CrossRef]
  12. Q. Lin and G. P. Agrawal, "Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers," J. Opt. Soc. Am. B 20, 1616-1631 (2003).
    [CrossRef]
  13. Q. Lin and G. P. Agrawal, "Statistics of polarization-dependent gain in fiber-based Raman amplifiers," Opt. Lett. 28, 227-229 (2003).
    [CrossRef] [PubMed]
  14. A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, "Polarized backward Raman amplification in randomly birefringent fibers," J. Lightwave Technol. 24, 4055-4063 (2006).
    [CrossRef]
  15. H. Kogelnik, R. M. Jopson, and L. E. Nelson, "Polarization mode dispersion," in Optical fiber telecommunications IV B - Systems and impairments, I. Kaminow and T. Li, ed. (Academic Press, San Diego, 2002).
  16. A. Galtarossa, Y. Jung, M. J. Kim, B. H. Lee, K. Oh, U. Paek, L. Palmieri, A. Pizzinat, and L. Schenato, "Effects of spin inaccuracy on PMD reduction in spun fibers," J. Lightwave Technol. 23, 4184-4191 (2005).
    [CrossRef]
  17. P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence" J. Lightwave Technol. 14, 148-157 (1996).
    [CrossRef]
  18. M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-345 (1989).
    [CrossRef]

2008 (2)

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, "Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths," Opt. Express 16, 6646-6651 (2008).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2004 (2)

2003 (2)

2000 (1)

1996 (1)

P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence" J. Lightwave Technol. 14, 148-157 (1996).
[CrossRef]

1994 (1)

M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

1989 (1)

M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-345 (1989).
[CrossRef]

1979 (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1159 (1979).
[CrossRef]

1975 (1)

R. Hellwarth, J. Cherlow, and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Agrawal, G. P.

Bennink, R. S.

Boot, A. J.

M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Boyd, R. W.

Bromage, J.

Cherlow, J.

R. Hellwarth, J. Cherlow, and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Fatome, J.

Fisher, R. A.

Galtarossa, A.

Heebner, J. E.

Hellwarth, R.

R. Hellwarth, J. Cherlow, and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Hidayat, A.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Jung, Y.

Kim, M. J.

Koch, B.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Lee, B. H.

Lichtinger, M.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Lin, Q.

Madsen, C. K.

Martelli, P.

Martinelli, M.

M. Martinelli, P. Martelli, and S. M. Pietralunga, "Polarization stabilization in optical communications systems," J. Lightwave Technol. 24, 4172-4183 (2006).
[CrossRef]

M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-345 (1989).
[CrossRef]

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence" J. Lightwave Technol. 14, 148-157 (1996).
[CrossRef]

Millot, G.

Mirvoda, V.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Noè, R.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Oh, K.

Oswald, P.

Paek, U.

Palmieri, L.

Pietralunga, S. M.

Pitois, S.

Pizzinat, A.

Sandel, D.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Santagiustina, M.

Sauter, A.

Schenato, L.

Stolen, R. H.

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1159 (1979).
[CrossRef]

Ursini, L.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence" J. Lightwave Technol. 14, 148-157 (1996).
[CrossRef]

Yang, T.

R. Hellwarth, J. Cherlow, and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Zhang, H.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1159 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

J. Lightwave Technol. (7)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-345 (1989).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

R. Hellwarth, J. Cherlow, and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Other (2)

H. Kogelnik, R. M. Jopson, and L. E. Nelson, "Polarization mode dispersion," in Optical fiber telecommunications IV B - Systems and impairments, I. Kaminow and T. Li, ed. (Academic Press, San Diego, 2002).

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, "All-optical polarization control through Brillouin amplification," in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Vectorial Stokes representation of Raman-gain and fiber-birefringence action on the signal. The variation ΔS of the signal Stokes vector S, for a small increment Δz of the propagation distance, is the sum of three contributions: ∣, ∣∣ and ∣∣∣. The pump gives origin to ∣=(1/2)gRS 0 PΔz and to ∥=(1/2)gRP 0 SΔz, while birefringence is responsible for ∣∣∣=-Ω R b×SΔz. (a) The general case is depicted: ∣ and ∥ are parallel respectively to P and S; their sum tends to pull S to P. ∣∣∣ is tangent to the precession cone of S around b. (b) Copolarized pump and signal case is illustrated: ∣ and ∥ keep S parallel to P, whilst ∣∣∣ pushes S away from P, thus counteracting Raman pulling. (c) Orthogonally-polarized pump and signal case is illustrated: ∣ and ∥ cancel out, while ∣∣∣ moves S towards P, thus breaking the orthogonality condition which prevents Raman pulling.

Fig. 2.
Fig. 2.

The average angle φ̄ between Stokes vectors P and S is evaluated at the output of a 2-km fiber Raman amplifier as a function of the PMD coefficient Dp , in the worst case of input signal and pump SOPs exactly orthogonal. For each considered value of Dp , 100 birefringence realizations are generated. Input pump power is varied from 2 W to 20 W. The full circles, joined by solid lines, are obtained including the NPR effect, while the open circles, joined by dashed lines, are obtained neglecting NPR.

Fig. 3.
Fig. 3.

Simulated example of polarization pulling, considering a single realization of birefringence in a 2-km fibre, with PMD coefficient of 0.027 ps/√km. The NPR effect is considered. Signal and pump SOPs are visualized on the Poincaré sphere of unit radius respectively with blue and red dots. The cartesian coordinates s 1, s 2, s 3 represent the normalized Stokes parameters. (a) Input signal and pump SOPs. We choose fourteen input signal SOPs corresponding to the six principal states plus the eigth centers of the sphere octants. Input pump SOP is kept horizontal. (b) Output signal and pump SOPs for an input pump power of 4 W. (c) Output signal and pump SOPs for an input pump power of 6 W. (d) Output signal and pump SOPs for an input pump power of 8 W.

Fig. 4.
Fig. 4.

Experimental set-up

Fig. 5.
Fig. 5.

Output signal SOP measured by a polarimeter and visualized on the Poincaré sphere of unit radius, while input SOP is scrambled. The input polarized pump power is: (a) 0.6 W; (b) 0.75 W; (c) 1.3 W; (d) 2.2 W.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ξdPdz=αpPωp2ωsgR(P0S+S0P)+(ωpβ+γpWpNL)×P
dSdz=αsS12gR(S0P+P0S)+(ωpβ+γsWsNL)×S,
ξdPdz=αpP
dSdz=αsS+12gR(S0P+P0S)ΩRb×S,
ds=τ×s,

Metrics