Abstract

The optical properties of periodic arrays of subwavelength apertures in metal films on GaAs substrates are studied. Specifically, geometric and material losses for these plasmonic structures are characterized using angular dependent transmission, normal incidence reflection, and angular dependent diffraction experiments, in addition to a crossed-polarizer transmission experiment. The optical properties of the samples as a function of engineered material losses are studied. Using this comprehensive approach to the characterization of the plasmonic structures, we are able to identify and isolate specific loss mechanisms, as well as identify the effect of free carriers on the optical properties of the structures.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode," J. Electro. Anal. Chem. 841–20 (1977).
    [Crossref]
  2. C. Genet and T. W. Ebbesen, “Light in Tiny Holes,” Nature 445, 39–46 (2007).
    [Crossref] [PubMed]
  3. J. T. Kim, J. J. Ju, S. Park, M. Kim, S. K. Park, and M. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133–13138 (2008).
    [Crossref] [PubMed]
  4. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [Crossref] [PubMed]
  5. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
    [Crossref] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  7. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [Crossref]
  8. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
    [Crossref]
  9. H. Liu and P. Lalanne, “Microscopic Theory of Extraordinary transmission,” Nature 452, 728–731 (2008).
    [Crossref] [PubMed]
  10. D. Pacifici, H. J. Lezec, and H. A. Atwater, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B. 77, 115411 (2008).
    [Crossref]
  11. D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222–9238 (2008).
    [Crossref] [PubMed]
  12. J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
    [Crossref]
  13. A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, “Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 52, 1320–1322 (1988).
    [Crossref]
  14. D. Pan and E. Towe, “Normal incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73, 1937–3939 (1998)
    [Crossref]
  15. K. W. Berryman, S. A. Lyon, and M. Segev, “Electronic structure and optical behavior of self-assembled InAs quantum dots,” J. Vac. Sci. Technol. B. 15, 1045–1050 (1997).
    [Crossref]
  16. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  17. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
    [Crossref]
  18. D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81, 2848–2850 (2002).
    [Crossref]
  19. A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A: Pure Appl. Opt. 7, S8d–S89 (2005).
    [Crossref]
  20. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
    [Crossref]
  21. E.A. Shaner, J. Cederberg, and D. Wasserman, “Current-tunable mid-infrared extraordinary transmission gratings,” Appl. Phys. Lett. 91, 181110 (2007).
    [Crossref]
  22. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90, 191102 (2007).
    [Crossref]
  23. M. Sarraazin, J. Vigneron, and J. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films wth a bidimensional array of subwavelength holes,” Phys. Rev. B. 67085415 (2003).
    [Crossref]
  24. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
    [Crossref]
  25. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J. Pelouard, “Angle. Resolved transmission measurements through anisotropic two-dimensional Plasmonic crystals,” Opt. Lett. 33, 165–167 (2008).
    [Crossref] [PubMed]
  26. R. W. Wood, Proc. Phil. Mag. 4, 396–408 (1902).
  27. L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
    [Crossref]
  28. S. Chang, S. Gray, and G. Schatz “Surface plasmon generation and light transmission by isolated nanohole and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150–3165 (2005).
    [Crossref] [PubMed]
  29. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [Crossref]

2008 (6)

H. Liu and P. Lalanne, “Microscopic Theory of Extraordinary transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B. 77, 115411 (2008).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J. Pelouard, “Angle. Resolved transmission measurements through anisotropic two-dimensional Plasmonic crystals,” Opt. Lett. 33, 165–167 (2008).
[Crossref] [PubMed]

D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222–9238 (2008).
[Crossref] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. Kim, S. K. Park, and M. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133–13138 (2008).
[Crossref] [PubMed]

2007 (5)

C. Genet and T. W. Ebbesen, “Light in Tiny Holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[Crossref]

E.A. Shaner, J. Cederberg, and D. Wasserman, “Current-tunable mid-infrared extraordinary transmission gratings,” Appl. Phys. Lett. 91, 181110 (2007).
[Crossref]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90, 191102 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

2006 (1)

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

2005 (2)

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A: Pure Appl. Opt. 7, S8d–S89 (2005).
[Crossref]

S. Chang, S. Gray, and G. Schatz “Surface plasmon generation and light transmission by isolated nanohole and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150–3165 (2005).
[Crossref] [PubMed]

2004 (1)

J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
[Crossref]

2003 (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
[Crossref]

M. Sarraazin, J. Vigneron, and J. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films wth a bidimensional array of subwavelength holes,” Phys. Rev. B. 67085415 (2003).
[Crossref]

2002 (1)

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81, 2848–2850 (2002).
[Crossref]

1999 (1)

1998 (3)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

D. Pan and E. Towe, “Normal incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73, 1937–3939 (1998)
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1997 (1)

K. W. Berryman, S. A. Lyon, and M. Segev, “Electronic structure and optical behavior of self-assembled InAs quantum dots,” J. Vac. Sci. Technol. B. 15, 1045–1050 (1997).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

1988 (1)

A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, “Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 52, 1320–1322 (1988).
[Crossref]

1977 (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode," J. Electro. Anal. Chem. 841–20 (1977).
[Crossref]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]

1902 (1)

R. W. Wood, Proc. Phil. Mag. 4, 396–408 (1902).

Allen, S. J.

A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, “Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 52, 1320–1322 (1988).
[Crossref]

Atwater, H. A

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B. 77, 115411 (2008).
[Crossref]

Bardou, N.

Berryman, K. W.

K. W. Berryman, S. A. Lyon, and M. Segev, “Electronic structure and optical behavior of self-assembled InAs quantum dots,” J. Vac. Sci. Technol. B. 15, 1045–1050 (1997).
[Crossref]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]

Billaudeau, C.

Capasso, F.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cederberg, J.

E.A. Shaner, J. Cederberg, and D. Wasserman, “Current-tunable mid-infrared extraordinary transmission gratings,” Appl. Phys. Lett. 91, 181110 (2007).
[Crossref]

Cederberg, J. G.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90, 191102 (2007).
[Crossref]

Chang, S.

Cho, A.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Coe, J. V.

J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
[Crossref]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
[Crossref]

Collin, S.

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Donev, E. U.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Duffield, T.

A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, “Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 52, 1320–1322 (1988).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in Tiny Holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Fainman, Y.

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[Crossref]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Feldman, L. C.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in Tiny Holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Gray, S.

Grupp, D. E.

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Haglund, R. F.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Harbison, J.

A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, “Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 52, 1320–1322 (1988).
[Crossref]

Hutchinson, A.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode," J. Electro. Anal. Chem. 841–20 (1977).
[Crossref]

Ju, J. J.

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Kastalsky, A.

A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, “Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 52, 1320–1322 (1988).
[Crossref]

Kim, J. T.

Kim, M.

Kim, T. J.

Krasavin, A. V.

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A: Pure Appl. Opt. 7, S8d–S89 (2005).
[Crossref]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic Theory of Extraordinary transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

Lee, M.

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B. 77, 115411 (2008).
[Crossref]

D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222–9238 (2008).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Liu, H.

H. Liu and P. Lalanne, “Microscopic Theory of Extraordinary transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

Lopez, R.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

Lyon, S. A.

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81, 2848–2850 (2002).
[Crossref]

K. W. Berryman, S. A. Lyon, and M. Segev, “Electronic structure and optical behavior of self-assembled InAs quantum dots,” J. Vac. Sci. Technol. B. 15, 1045–1050 (1997).
[Crossref]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B. 77, 115411 (2008).
[Crossref]

D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222–9238 (2008).
[Crossref] [PubMed]

Pan, D.

D. Pan and E. Towe, “Normal incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73, 1937–3939 (1998)
[Crossref]

Pang, L.

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[Crossref]

Pardo, F.

Park, S.

Park, S. K.

Pelouard, J.

Pflügl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Rodriguez, K. R.

J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
[Crossref]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
[Crossref]

Rogers, T. M.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
[Crossref]

Sarraazin, M.

M. Sarraazin, J. Vigneron, and J. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films wth a bidimensional array of subwavelength holes,” Phys. Rev. B. 67085415 (2003).
[Crossref]

Sauvan, C.

Schatz, G.

Segev, M.

K. W. Berryman, S. A. Lyon, and M. Segev, “Electronic structure and optical behavior of self-assembled InAs quantum dots,” J. Vac. Sci. Technol. B. 15, 1045–1050 (1997).
[Crossref]

Shah, S.

J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
[Crossref]

Shaner, E. A.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90, 191102 (2007).
[Crossref]

Shaner, E.A.

E.A. Shaner, J. Cederberg, and D. Wasserman, “Current-tunable mid-infrared extraordinary transmission gratings,” Appl. Phys. Lett. 91, 181110 (2007).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Stafford, A. D.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
[Crossref]

Suh, J. Y.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

Teeters-Kennedy, S. M.

J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
[Crossref]

Tetz, K. A.

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[Crossref]

Thio, T.

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Towe, E.

D. Pan and E. Towe, “Normal incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73, 1937–3939 (1998)
[Crossref]

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode," J. Electro. Anal. Chem. 841–20 (1977).
[Crossref]

Vigneron, J.

M. Sarraazin, J. Vigneron, and J. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films wth a bidimensional array of subwavelength holes,” Phys. Rev. B. 67085415 (2003).
[Crossref]

Vigoureux, J.

M. Sarraazin, J. Vigneron, and J. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films wth a bidimensional array of subwavelength holes,” Phys. Rev. B. 67085415 (2003).
[Crossref]

Walters, R. J.

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Wasserman, D.

E.A. Shaner, J. Cederberg, and D. Wasserman, “Current-tunable mid-infrared extraordinary transmission gratings,” Appl. Phys. Lett. 91, 181110 (2007).
[Crossref]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90, 191102 (2007).
[Crossref]

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81, 2848–2850 (2002).
[Crossref]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Williams, S. M.

J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
[Crossref]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wood, R. W.

R. W. Wood, Proc. Phil. Mag. 4, 396–408 (1902).

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Yu, N.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Zayats, A. V.

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A: Pure Appl. Opt. 7, S8d–S89 (2005).
[Crossref]

Zheludev, N. I.

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A: Pure Appl. Opt. 7, S8d–S89 (2005).
[Crossref]

Appl. Phys. Lett. (7)

A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, “Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 52, 1320–1322 (1988).
[Crossref]

D. Pan and E. Towe, “Normal incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73, 1937–3939 (1998)
[Crossref]

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81, 2848–2850 (2002).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

E.A. Shaner, J. Cederberg, and D. Wasserman, “Current-tunable mid-infrared extraordinary transmission gratings,” Appl. Phys. Lett. 91, 181110 (2007).
[Crossref]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90, 191102 (2007).
[Crossref]

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[Crossref]

J. Electro. Anal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode," J. Electro. Anal. Chem. 841–20 (1977).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A: Pure Appl. Opt. 7, S8d–S89 (2005).
[Crossref]

J. Phys. Chem. B (1)

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107, 11871–11879 (2003).
[Crossref]

J. Vac. Sci. Technol. B. (1)

K. W. Berryman, S. A. Lyon, and M. Segev, “Electronic structure and optical behavior of self-assembled InAs quantum dots,” J. Vac. Sci. Technol. B. 15, 1045–1050 (1997).
[Crossref]

Nano. Lett. (1)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano. Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Nanotechnology (1)

J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, “Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy,” Nanotechnology 15, S495–S503 (2004).
[Crossref]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. Liu and P. Lalanne, “Microscopic Theory of Extraordinary transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in Tiny Holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Nature Photonics (1)

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics 2, 564–570 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[Crossref]

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission thorugh subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]

Phys. Rev. B. (2)

M. Sarraazin, J. Vigneron, and J. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films wth a bidimensional array of subwavelength holes,” Phys. Rev. B. 67085415 (2003).
[Crossref]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B. 77, 115411 (2008).
[Crossref]

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Proc. Phil. Mag. (1)

R. W. Wood, Proc. Phil. Mag. 4, 396–408 (1902).

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental set-ups utilized for full spectral and spatial analysis of EOT grating structures. (a) Coaxial independent rotation of sample and detector, allowing for experiments measuring normal transmission as a function of incidence angle and diffraction of normally incident light as a function of detector position. (b) Dual detection experiment for simultaneous measurement of transmitted and diffracted light. (c) Normal incidence reflection experiment. (d) Crossed polarizer experiment, with inset showing polarizer and sample orientations.

Fig. 2.
Fig. 2.

(a) Spectrum of normally incident light directly transmitted through an EOT grating structure. The (±1,0) and (±1, ±1) transmission peaks are labeled. Inset shows the transmitted light spectrum as a function of sample angle, demonstrating a clear splitting of the degeneracy of the (1,0) and (-1,0) transmitted peaks. (b) Surface countour plot of transmitted/diffracted light intensity as a function of wavenumber and detector angle. Identifiable are the directly transmitted (1,0) and (1,1) EOT peaks, the air/metal diffracted modes, and the Wood’s Anomaly. Data from 20–135° is scaled (×4) for ease of viewing.

Fig. 3.
Fig. 3.

Comparison of the EOT direct transmission and Wood’s Anomaly diffraction spectra for (a) 1 μm undoped GaAs and (b) 500 nm, doped 1018cm-3, GaAs. Note the blueshift and lineshape change of the EOT peak at higher carrier concentrations.

Fig. 4.
Fig. 4.

(a) Comparison of the normalized Parallel and Crossed polarizer (PP, XP) transmission spectra. While the PP spectrum shows the same lineshape and peak position as the EOT spectrum for this sample, the XP spectrum is blue-shifted, sitting on the high energy falling edge of the PP spectrum. Furthermore, the XP spectrum does not have a Fano lineshape, but instead appears closer to a Lorentzian peak shape. While the plots are normalized, the weak signal to noise ratio of the XP spectrum is indicative of the weaker signal associated with this transmission. (b) Comparison of the normalized EOT and reflection spectra. The reflection data shows two significant dips, the first at the peak EOT spectral position, the second to the high energy falling edge of the primary EOT peak.

Fig. 5.
Fig. 5.

Comparison of normalized EOT, WA, XP, and reflection (Ref.) spectra for sample A. The reflection data has been vertically offset for clarity. The table (right) shows the relative strength of the collected signal for each phenomenon (EOT, WA, and XP), compared to the strength of the dip in the reflection spectrum at the peak wavelength of each effect (EOT, WA, and XP). At the wavelength of the EOT peak, a strong dip in reflection is seen, suggesting strong coupling, and low losses. The distinct WA peak has no corresponding reflection dip, suggesting weak coupling, and low losses. Finally, the weak XP signal peak corresponds to a noticeable reflection dip, indicating strong coupling, but high losses.

Fig. 6.
Fig. 6.

Transmission through EOT grating structure as a function of (a) Doping concentration, for a doped epilayer of fixed width (250nm) and (b) Doped epilayer thickness, for a fixed doping concentration of 1E18cm-3.

Fig. 7.
Fig. 7.

Peak positions for EOT, WA, XP, and Reflection data as a function of (a) Doping thickness and (b) Doping density. While the EOT, XP, and Reflection data each show significant shifts with doping, as the dielectric constant of the semiconductor is tuned at the metal/semiconductor interface, no such tuning of the Wood’s Anomaly is observed.

Tables (1)

Tables Icon

Table 1. Epilayer growth structures of samples studied.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=εs (1ωpω2+iΓω) , ωp2=ne2ε0m* ,

Metrics