Abstract

A method is brought forward for realizing polarization dependent devices by employing sub-wavelength asymmetrical hole array on a metallic film. Based on the fundamental mode approximation, the phase retardations of rectangular hole for two orthogonal polarization incident waves are analyzed and calculated. Using rectangular hole array, a bifocal-polarization lens for the infrared radiation with 10.6μm wavelength is designed. Its focal lengths for x- and y- polarized incident wave are examined by the finite difference time domain (FDTD) method and the Rayleigh-Sommerfeld diffraction integrals and the obtained results agree well with the designed values.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Cremer, W. de Jong, and K. Schutte, "Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines," Opt. Eng. 41, 1021-1032 (2002).
    [CrossRef]
  2. B. Hao and J. Leger, "Polarization beam shaping," App. Opt. 46, 8211-8217 (2007).
    [CrossRef]
  3. G. Martinez-Ponce, T. Petrova, N. Tomova, V. Dragostnova, T. Todorov, and L. Nikolova, "Bifocal-polarization holographic lens," Opt. Lett. 29, 1001-1003 (2004).
    [CrossRef] [PubMed]
  4. K. Takano, M. Saito, and M. Miyagi, "Cube polarizers by the use of metal particles in anodic alumina films," App. Opt. 33, 3507-3512 (1994).
    [CrossRef]
  5. G. R. Bird and M. ParrishJr., "The wire grid as a near-infrared polarizer," J. Opt. Soc. Am. 50, 886-891 (1960).
    [CrossRef]
  6. Y. Chen, C. Zhou, X. Luo, and C. Du, "Structured lens formed by a 2D square hole array in a metallic film," Opt. Lett. 33, 753-755 (2008).
    [CrossRef] [PubMed]
  7. S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008).
    [CrossRef] [PubMed]
  8. J. M. Brok and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Express. 14, 2552-2572 (2006).
    [CrossRef] [PubMed]
  9. L. Martin-Moreno and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express. 12, 3619-3628 (2004).
    [CrossRef]
  10. Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
    [CrossRef]
  11. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007).
    [CrossRef] [PubMed]
  12. H. M. Barlow and A. L. Cullen, "Surface waves," Proc. IEE 100, 329-347 (1953).
  13. R. Collin, Field Theory of Guided Waves (Wiley, New York, ed. 2, 1990).
    [CrossRef]
  14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005).
    [CrossRef]
  15. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef]
  16. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado and L. Martin-Moreno, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
    [CrossRef] [PubMed]
  17. F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006).
    [CrossRef] [PubMed]
  18. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express. 12, 1004-1010 (2004).
    [CrossRef] [PubMed]
  19. F. J. Garcia De Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
    [CrossRef]
  20. J. R. Suckling et al, "Finite conductance governs the resonance transmission of thin metal slits at Microwave Frequencies," Phys. Rev. Lett. 92, 147201 (2004).
    [CrossRef]
  21. D. W. Lynch and W. R. Hunter, Handbook of Optical constants of solids (Academic Press, Palik, E. D., ed., New York, 1985).

2008 (2)

Y. Chen, C. Zhou, X. Luo, and C. Du, "Structured lens formed by a 2D square hole array in a metallic film," Opt. Lett. 33, 753-755 (2008).
[CrossRef] [PubMed]

S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008).
[CrossRef] [PubMed]

2007 (2)

B. Hao and J. Leger, "Polarization beam shaping," App. Opt. 46, 8211-8217 (2007).
[CrossRef]

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

2006 (2)

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006).
[CrossRef] [PubMed]

J. M. Brok and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Express. 14, 2552-2572 (2006).
[CrossRef] [PubMed]

2005 (2)

F. J. Garcia De Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005).
[CrossRef]

2004 (6)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado and L. Martin-Moreno, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
[CrossRef] [PubMed]

J. R. Suckling et al, "Finite conductance governs the resonance transmission of thin metal slits at Microwave Frequencies," Phys. Rev. Lett. 92, 147201 (2004).
[CrossRef]

H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express. 12, 1004-1010 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express. 12, 3619-3628 (2004).
[CrossRef]

G. Martinez-Ponce, T. Petrova, N. Tomova, V. Dragostnova, T. Todorov, and L. Nikolova, "Bifocal-polarization holographic lens," Opt. Lett. 29, 1001-1003 (2004).
[CrossRef] [PubMed]

2002 (1)

F. Cremer, W. de Jong, and K. Schutte, "Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines," Opt. Eng. 41, 1021-1032 (2002).
[CrossRef]

2001 (1)

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
[CrossRef]

1994 (1)

K. Takano, M. Saito, and M. Miyagi, "Cube polarizers by the use of metal particles in anodic alumina films," App. Opt. 33, 3507-3512 (1994).
[CrossRef]

1960 (1)

Beruete, M.

Bird, G. R.

Brok, J. M.

J. M. Brok and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Express. 14, 2552-2572 (2006).
[CrossRef] [PubMed]

Campillo, I.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006).
[CrossRef] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado and L. Martin-Moreno, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
[CrossRef] [PubMed]

Cao, H.

H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express. 12, 1004-1010 (2004).
[CrossRef] [PubMed]

Chan, C. T.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
[CrossRef]

Chen, Y.

Cremer, F.

F. Cremer, W. de Jong, and K. Schutte, "Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines," Opt. Eng. 41, 1021-1032 (2002).
[CrossRef]

de Jong, W.

F. Cremer, W. de Jong, and K. Schutte, "Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines," Opt. Eng. 41, 1021-1032 (2002).
[CrossRef]

Dolado, J. S.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006).
[CrossRef] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado and L. Martin-Moreno, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
[CrossRef] [PubMed]

Dragostnova, V.

Du, C.

Y. Chen, C. Zhou, X. Luo, and C. Du, "Structured lens formed by a 2D square hole array in a metallic film," Opt. Lett. 33, 753-755 (2008).
[CrossRef] [PubMed]

S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008).
[CrossRef] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006).
[CrossRef] [PubMed]

F. J. Garcia De Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

L. Martin-Moreno and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express. 12, 3619-3628 (2004).
[CrossRef]

Gomez-Medina, R.

F. J. Garcia De Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Hao, B.

B. Hao and J. Leger, "Polarization beam shaping," App. Opt. 46, 8211-8217 (2007).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005).
[CrossRef]

Leger, J.

B. Hao and J. Leger, "Polarization beam shaping," App. Opt. 46, 8211-8217 (2007).
[CrossRef]

Luo, X.

S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008).
[CrossRef] [PubMed]

Y. Chen, C. Zhou, X. Luo, and C. Du, "Structured lens formed by a 2D square hole array in a metallic film," Opt. Lett. 33, 753-755 (2008).
[CrossRef] [PubMed]

Martinez-Ponce, G.

Martin-Moreno, L.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado and L. Martin-Moreno, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express. 12, 3619-3628 (2004).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

Ming, N.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
[CrossRef]

Miyagi, M.

K. Takano, M. Saito, and M. Miyagi, "Cube polarizers by the use of metal particles in anodic alumina films," App. Opt. 33, 3507-3512 (1994).
[CrossRef]

Nahata, A.

H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express. 12, 1004-1010 (2004).
[CrossRef] [PubMed]

Nikolova, L.

Parrish, M.

Pendry, J. B.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

Petrova, T.

Saenz, J. J.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006).
[CrossRef] [PubMed]

F. J. Garcia De Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Saito, M.

K. Takano, M. Saito, and M. Miyagi, "Cube polarizers by the use of metal particles in anodic alumina films," App. Opt. 33, 3507-3512 (1994).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005).
[CrossRef]

Sarychev, A.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Schutte, K.

F. Cremer, W. de Jong, and K. Schutte, "Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines," Opt. Eng. 41, 1021-1032 (2002).
[CrossRef]

Sheng, P.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
[CrossRef]

Shvets, G.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Sorolla, M.

Suckling, J. R.

J. R. Suckling et al, "Finite conductance governs the resonance transmission of thin metal slits at Microwave Frequencies," Phys. Rev. Lett. 92, 147201 (2004).
[CrossRef]

Takano, K.

K. Takano, M. Saito, and M. Miyagi, "Cube polarizers by the use of metal particles in anodic alumina films," App. Opt. 33, 3507-3512 (1994).
[CrossRef]

Todorov, T.

Tomova, N.

Trendafilov, S.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Urbach, H. P.

J. M. Brok and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Express. 14, 2552-2572 (2006).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
[CrossRef]

Yin, S.

S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008).
[CrossRef] [PubMed]

Zhang, W.

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
[CrossRef]

Zhou, C.

S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008).
[CrossRef] [PubMed]

Y. Chen, C. Zhou, X. Luo, and C. Du, "Structured lens formed by a 2D square hole array in a metallic film," Opt. Lett. 33, 753-755 (2008).
[CrossRef] [PubMed]

App. Opt. (2)

B. Hao and J. Leger, "Polarization beam shaping," App. Opt. 46, 8211-8217 (2007).
[CrossRef]

K. Takano, M. Saito, and M. Miyagi, "Cube polarizers by the use of metal particles in anodic alumina films," App. Opt. 33, 3507-3512 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

F. Cremer, W. de Jong, and K. Schutte, "Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines," Opt. Eng. 41, 1021-1032 (2002).
[CrossRef]

Opt. Express. (5)

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006).
[CrossRef] [PubMed]

H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express. 12, 1004-1010 (2004).
[CrossRef] [PubMed]

S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008).
[CrossRef] [PubMed]

J. M. Brok and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Express. 14, 2552-2572 (2006).
[CrossRef] [PubMed]

L. Martin-Moreno and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express. 12, 3619-3628 (2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001).
[CrossRef]

Phys. Rev. E (1)

F. J. Garcia De Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

J. R. Suckling et al, "Finite conductance governs the resonance transmission of thin metal slits at Microwave Frequencies," Phys. Rev. Lett. 92, 147201 (2004).
[CrossRef]

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Science (2)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

Other (3)

D. W. Lynch and W. R. Hunter, Handbook of Optical constants of solids (Academic Press, Palik, E. D., ed., New York, 1985).

H. M. Barlow and A. L. Cullen, "Surface waves," Proc. IEE 100, 329-347 (1953).

R. Collin, Field Theory of Guided Waves (Wiley, New York, ed. 2, 1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The phase retardation of the first order TE mode varies as a function of its related side a for a rectangular hole on the metallic film with various thicknesses.

Fig. 2.
Fig. 2.

(a). Diagram of the metallic bifocal-polarization lens; (b) the corresponding phase retardation functions for y- and x- polarized incidence of the holes in the frame formed by white-dotted line in Fig. 2(a).

Fig. 3.
Fig. 3.

The intensity (E 2) distribution of electric field behind the bifocal lens for x- and y-polarized incident plane wave respectively. (a) and (c) are the intensity for y=0 and z from 100μm to 250μm; (b) and (d) are the intensity distribution on the optical axis for z from 100μm to 250μm;

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(x,y.z)=Axx̂0sin(πy/ay)exp(izk02π2/ay2)+Ayŷ0sin (πx/ax)exp(izk02π2/ax2)
φx=hk02π2/ay2
φy=hk02π2/ax2
φ(r)=2mπ+2π(r2+f2f)/λ0

Metrics