Abstract

Ytterbium-doped solid-core photonic bandgap fiber amplifiers operating at the long-wavelength edge of the ytterbium gain band are reported. The low-loss bandgap transmission window is formed in the very low gain region, whilst outside the bandgap, large attenuation inhibits the exponential growth of amplified spontaneous emission in the huge-gain 1030-1100 nm region. Hence parasitic-lasing-free, high-power amplification with a marked efficiency is enabled. A 32 W output at 1156 nm with a 66% slope efficiency and 30 W output at 1178 nm with a 58% slope efficiency were successfully obtained. To our knowledge, these are the highest output powers generating from active photonic bandgap fibers, as well as from ytterbium-doped fiber lasers at these wavelengths.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Saito K. Akagawa, M. Ito, A. Takazawa, Y. Hayano, Y. Saito, M. Ito, H. Takami, M. Iye, and S. Wada, "Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers," Opt. Lett. 32, 1965-1967 (2007).
    [CrossRef] [PubMed]
  2. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, "589 nm light source based on Raman fiber laser," Jpn. J. Appl. Phys. 43, L722-724 (2004).
    [CrossRef]
  3. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm," Opt. Express 13, 6772-6776 (2005).
    [CrossRef] [PubMed]
  4. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, "High-power cw bismuth-fiber lasers," J. Opt. Soc. Am. B 24, 1749-1755 (2007).
    [CrossRef]
  5. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, "Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling," Opt. Express 15, 5473- 5476 (2007).
    [CrossRef] [PubMed]
  6. J. Ota, A. Shirakawa, and K. Ueda, "High-power Yb-doped double-clad fiber laser directly operating at 1178nm," Jpn. J. Appl. Phys. 45, L117-L119 (2006).
    [CrossRef]
  7. M. Adachi, K. Kojima, T. Yoda, and K. Hayashi, "CW orange beam generation by 1160-nm fiber laser system," presented at 53rd Spring Meeting of the Japan Society of Applied Physics and Related Societies, Tokyo, Japan, 22-26 Mar. 2006.
    [PubMed]
  8. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator," Opt. Lett. 31, 347-349 (2006).
    [CrossRef] [PubMed]
  9. A. S. Kurkov, V. M. Paramonov, and O. I. Medvedkov, "Ytterbium fiber emitting at 1160 nm," Laser Phys. Lett. 3, 503-506 (2006).
    [CrossRef]
  10. A. S. Kurkov, "Oscillation spectral range of Yb-doped fiber lasers," Laser Phys. Lett. 4, 93-102 (2007).
    [CrossRef]
  11. H. Maruyama, A. Shirakawa, and K. Ueda, "1178nm linearly-polarized all fiber laser," in Conference on Lasers and Electro-Optics/Pacific Rim 2007, Technical Digest (CD) (Optical Society of America, 2007), paper TuA4.
    [CrossRef]
  12. A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
    [CrossRef] [PubMed]
  13. S. Février, D. D. Gaponov, P. Roy, M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, M. Y. Yashkov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, "High-power photonic-bandgap fiber laser," Opt. Lett. 33, 989-991 (2008).
    [CrossRef] [PubMed]
  14. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
    [CrossRef] [PubMed]
  15. T. Taru, J. Hou, and J. C. Knight, "Raman gain suppression in all-solid photonic bandgap fiber," in European Conference and Exhibition on Optical Communication 2007, Berlin, Sep. 2007, paper 7.1.1.
    [CrossRef]
  16. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
    [CrossRef]
  17. C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, "Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all solid photonic bandgap fibre," Opt. Express 16, 13657-13662 (2008).
    [CrossRef] [PubMed]
  18. R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, "Cladding-pumped Yb-doped solid photonic bandgap fiber for ASE suppression in shorter wavelength region," in Optical Fiber Communication Conference 2008, Technical Digest (CD) (Optical Society of America, 2008), paper OTuJ5.
    [CrossRef]
  19. J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," Proc. SPIE 6453, 64531E (2007).
    [CrossRef]
  20. Q1. K. Ueda, "The prospects of high power fiber lasers," Rev. Laser Eng. 29, 79-83 (2001).
  21. J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, "Polarization maintaining hybrid TIR / bandgap all-solid photonic crystal fiber," in Conference on Lasers and Electro-Optics 2008, Technical Digest (CD) (Optical Society of America, 2008), paper CThV1.
  22. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006).
    [CrossRef] [PubMed]
  23. A. Hardy and R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
    [CrossRef]
  24. C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
    [CrossRef]

2008

2007

2006

2005

2004

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, "589 nm light source based on Raman fiber laser," Jpn. J. Appl. Phys. 43, L722-724 (2004).
[CrossRef]

2001

Q1. K. Ueda, "The prospects of high power fiber lasers," Rev. Laser Eng. 29, 79-83 (2001).

1997

A. Hardy and R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, "Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling," Opt. Express 15, 5473- 5476 (2007).
[CrossRef] [PubMed]

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, "Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling," Opt. Express 15, 5473- 5476 (2007).
[CrossRef] [PubMed]

Boyer, C.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
[CrossRef]

Broeng, J.

Bubnov, M. M.

Bufetov, I. A.

Byer, R. L.

Dianov, E. M.

Digonnet, M. J. F.

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Dronov, A. G.

Ellerbroek, B.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
[CrossRef]

Falk, C. I.

Fejer, M. M.

Feng, Y.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, "589 nm light source based on Raman fiber laser," Jpn. J. Appl. Phys. 43, L722-724 (2004).
[CrossRef]

Ferin, A. A.

Février, S.

Gaponov, D. D.

Gapontsev, V. P.

Gedig, M.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
[CrossRef]

George, A. K.

Georgiev, D.

Guryanov, A. N.

Hansen, K. P.

Hardy, A.

A. Hardy and R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

Hileman, E.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
[CrossRef]

Hoffman, H. J.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," Proc. SPIE 6453, 64531E (2007).
[CrossRef]

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, "589 nm light source based on Raman fiber laser," Jpn. J. Appl. Phys. 43, L722-724 (2004).
[CrossRef]

Isomäki, A.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Jensen, B. B.

Joyce, R.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
[CrossRef]

Khopin, V. F.

Kliner, D.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," Proc. SPIE 6453, 64531E (2007).
[CrossRef]

Knight, J. C.

Koplow, J.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," Proc. SPIE 6453, 64531E (2007).
[CrossRef]

Koponen, J.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," Proc. SPIE 6453, 64531E (2007).
[CrossRef]

Kurkov, A. S.

A. S. Kurkov, "Oscillation spectral range of Yb-doped fiber lasers," Laser Phys. Lett. 4, 93-102 (2007).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, and O. I. Medvedkov, "Ytterbium fiber emitting at 1160 nm," Laser Phys. Lett. 3, 503-506 (2006).
[CrossRef]

Langrock, C.

Liang, M.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
[CrossRef]

Likhachev, M. E.

Luan, F.

Lyngsø, J. K.

Medvedkov, O. I.

E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, "High-power cw bismuth-fiber lasers," J. Opt. Soc. Am. B 24, 1749-1755 (2007).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, and O. I. Medvedkov, "Ytterbium fiber emitting at 1160 nm," Laser Phys. Lett. 3, 503-506 (2006).
[CrossRef]

Melkumov, M. A.

Okhotnikov, O. G.

Olausson, C. B.

Oron, R.

A. Hardy and R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

Ota, J.

J. Ota, A. Shirakawa, and K. Ueda, "High-power Yb-doped double-clad fiber laser directly operating at 1178nm," Jpn. J. Appl. Phys. 45, L117-L119 (2006).
[CrossRef]

Paramonov, V. M.

A. S. Kurkov, V. M. Paramonov, and O. I. Medvedkov, "Ytterbium fiber emitting at 1160 nm," Laser Phys. Lett. 3, 503-506 (2006).
[CrossRef]

Pearce, G. J.

Popov, S. V.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Razdobreev, I.

Roy, P.

Rulkov, A. B.

Salganskii, M. Y.

Semjonov, S. L.

Shirakawa, A.

J. Ota, A. Shirakawa, and K. Ueda, "High-power Yb-doped double-clad fiber laser directly operating at 1178nm," Jpn. J. Appl. Phys. 45, L117-L119 (2006).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, "589 nm light source based on Raman fiber laser," Jpn. J. Appl. Phys. 43, L722-724 (2004).
[CrossRef]

Shubin, A. V.

Sinha, S.

Söderlund, M.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," Proc. SPIE 6453, 64531E (2007).
[CrossRef]

Taylor, J. R.

Therkildsen, K. T.

Thomsen, J. W.

Ueda, K.

J. Ota, A. Shirakawa, and K. Ueda, "High-power Yb-doped double-clad fiber laser directly operating at 1178nm," Jpn. J. Appl. Phys. 45, L117-L119 (2006).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, "589 nm light source based on Raman fiber laser," Jpn. J. Appl. Phys. 43, L722-724 (2004).
[CrossRef]

Q1. K. Ueda, "The prospects of high power fiber lasers," Rev. Laser Eng. 29, 79-83 (2001).

Vyatkin, M. Y.

Wang, A.

Yashkov, M. Y.

Appl. Phys. Lett.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

IEEE J. Quantum Electron.

A. Hardy and R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

J. Ota, A. Shirakawa, and K. Ueda, "High-power Yb-doped double-clad fiber laser directly operating at 1178nm," Jpn. J. Appl. Phys. 45, L117-L119 (2006).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, "589 nm light source based on Raman fiber laser," Jpn. J. Appl. Phys. 43, L722-724 (2004).
[CrossRef]

Laser Phys. Lett.

A. S. Kurkov, V. M. Paramonov, and O. I. Medvedkov, "Ytterbium fiber emitting at 1160 nm," Laser Phys. Lett. 3, 503-506 (2006).
[CrossRef]

A. S. Kurkov, "Oscillation spectral range of Yb-doped fiber lasers," Laser Phys. Lett. 4, 93-102 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, "Update on the TMT laser guide star facility design," Proc. SPIE 7015, 70152N (2008).
[CrossRef]

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," Proc. SPIE 6453, 64531E (2007).
[CrossRef]

Rev. Laser Eng.

Q1. K. Ueda, "The prospects of high power fiber lasers," Rev. Laser Eng. 29, 79-83 (2001).

Other

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, "Polarization maintaining hybrid TIR / bandgap all-solid photonic crystal fiber," in Conference on Lasers and Electro-Optics 2008, Technical Digest (CD) (Optical Society of America, 2008), paper CThV1.

H. Maruyama, A. Shirakawa, and K. Ueda, "1178nm linearly-polarized all fiber laser," in Conference on Lasers and Electro-Optics/Pacific Rim 2007, Technical Digest (CD) (Optical Society of America, 2007), paper TuA4.
[CrossRef]

M. Adachi, K. Kojima, T. Yoda, and K. Hayashi, "CW orange beam generation by 1160-nm fiber laser system," presented at 53rd Spring Meeting of the Japan Society of Applied Physics and Related Societies, Tokyo, Japan, 22-26 Mar. 2006.
[PubMed]

T. Taru, J. Hou, and J. C. Knight, "Raman gain suppression in all-solid photonic bandgap fiber," in European Conference and Exhibition on Optical Communication 2007, Berlin, Sep. 2007, paper 7.1.1.
[CrossRef]

R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, "Cladding-pumped Yb-doped solid photonic bandgap fiber for ASE suppression in shorter wavelength region," in Optical Fiber Communication Conference 2008, Technical Digest (CD) (Optical Society of America, 2008), paper OTuJ5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Cross section of an air-clad Yb-doped solid-core PBGF. (b) White-light transmission spectrum of each 1 m long fiber. The bandgap order is also indicated. The 4th bandgap cannot be clearly seen due to Yb absorption.

Fig. 2.
Fig. 2.

White-light transmission spectra of (a) 1 m long Yb-PBGF-A and (b) 1.5 m long Yb-PBGF-B with different coiling diameters. The emission cross section spectrum is shown by dashed-dot curve. The dashed curve shows the calculated effective small-signal gain spectrum with a coiling diameter used in the amplifier (Dcoil=10 cm and 26 cm for Yb-PBGF-A and B). The pump power of 50W and signal-core overlap factor of 0.84 are used.

Fig.3.
Fig.3.

Experimental setup.

Fig. 4.
Fig. 4.

(a) Output power evolutions of the 1156 nm (blue) and 1178 nm (red) amplifiers based on Yb-PBGF-A. (b) Spectra at 1156 nm (blue) and 1178 nm (red) at 32 W and 9.1 W output powers, respectively. The white-light transmission spectrum for the 24 m long fiber is also shown (dashed curve).

Fig. 5.
Fig. 5.

(a) Calculated fiber-length dependence of output powers at 1156 nm (blue) and 1178 nm (red) for Yb-PBGF-A (dashed curves) and Yb-PBGF-B (solid curves). (b) Fiber loss dependence of output powers (solid curves) and extraction efficiencies (dashed curves) at 1156 nm (blue) and 1178 nm (red). The experimental outputs are also plotted.

Fig. 6.
Fig. 6.

(a) Output power evolution of the 1178 nm amplifier based on Yb-PBGF-B in non-polarization (filled circles) and linear polarization (open circles). (b) Spectra of the maximum 30 W output (solid curve) and the seed (dashed curve). Inset: near-field beam profile of the amplifier output.

Metrics