Abstract

We investigate theoretically the tuning properties of the resonant mode of the waveguide-grating structures (WGS). This intends to understand how tuning mechanisms of the waveguide resonance mode depend on the structural and the geometric parameters of the WGS device, which can be used as guidance for the design of biosensors and other optoelectronic devices. The device parameters studied here include the angle of incidence, the thickness and refractive index of the waveguide, the period of the grating, and the refractive indices of the substrate and the medium on top of the grating. In particular, the control of the tuning rate and the adjustment of the tuning range by optimizing the combination of the relevant parameters provide a practical route for the design of biosensor and optical switch.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Levy-Yurista and A. A. Friesem, "Very narrow spectral filters with multilayered grating-waveguide structures," Appl. Phys. Lett. 77, 1596 (2000).
    [CrossRef]
  2. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
    [CrossRef]
  3. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  4. P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, "Guided mode resonance filters using polymer films," Appl. Phys. Lett. 71, 1008-1010 (1997).
    [CrossRef]
  5. A. Sharon, D. Rosenblatt, and A. A. Friesem, "Narrow spectral bandwidths with grating waveguide structures," Appl. Phys. Lett. 69, 4154-4156 (1996).
    [CrossRef]
  6. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
    [CrossRef]
  7. Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
    [CrossRef]
  8. R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, ‘‘Resonant waveguide-grating switching device with nonlinear optical material,’’Appl. Opt. 38, 5181-5185 (1999).
    [CrossRef]
  9. R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi and N. B. Larsen, "Optical waveguide sensor for on-line monitoring of bacteria," Opt. Lett. 28, 1233-1235 (2003).
    [CrossRef] [PubMed]
  10. G. Nemova and R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).
    [CrossRef]
  11. X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
    [CrossRef] [PubMed]
  12. X. P. Zhang, Shengfei Feng, Hongmei Liu and Li Wang, "Enhanced optical response in doubly waveguided plasmonic gratings," Appl. Phys. Lett. 93, 093113 (2008).
    [CrossRef]

2008 (1)

X. P. Zhang, Shengfei Feng, Hongmei Liu and Li Wang, "Enhanced optical response in doubly waveguided plasmonic gratings," Appl. Phys. Lett. 93, 093113 (2008).
[CrossRef]

2007 (1)

G. Nemova and R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).
[CrossRef]

2006 (2)

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

2003 (1)

2000 (1)

G. Levy-Yurista and A. A. Friesem, "Very narrow spectral filters with multilayered grating-waveguide structures," Appl. Phys. Lett. 77, 1596 (2000).
[CrossRef]

1999 (1)

1997 (3)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, "Guided mode resonance filters using polymer films," Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

1996 (1)

A. Sharon, D. Rosenblatt, and A. A. Friesem, "Narrow spectral bandwidths with grating waveguide structures," Appl. Phys. Lett. 69, 4154-4156 (1996).
[CrossRef]

1992 (1)

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Bertram, R. P.

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Boye, R. R.

Buse, K.

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Callender, C. L.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, "Guided mode resonance filters using polymer films," Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Friend, R. H.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Friesem, A. A.

G. Levy-Yurista and A. A. Friesem, "Very narrow spectral filters with multilayered grating-waveguide structures," Appl. Phys. Lett. 77, 1596 (2000).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, "Narrow spectral bandwidths with grating waveguide structures," Appl. Phys. Lett. 69, 4154-4156 (1996).
[CrossRef]

Giessen, H.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Gippius, N. A.

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Guo, H. C.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Horváth, R.

Kashyap, R.

G. Nemova and R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).
[CrossRef]

Kostuk, R. K.

Kuhl, J.

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Larsen, N. B.

Levy-Yurista, G.

G. Levy-Yurista and A. A. Friesem, "Very narrow spectral filters with multilayered grating-waveguide structures," Appl. Phys. Lett. 77, 1596 (2000).
[CrossRef]

Magnusson, R.

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Natansohn, A.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, "Guided mode resonance filters using polymer films," Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Nau, D.

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Nemova, G.

G. Nemova and R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).
[CrossRef]

Pedersen, H. C.

Robitaille, L.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, "Guided mode resonance filters using polymer films," Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Rochon, P.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, "Guided mode resonance filters using polymer films," Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, "Narrow spectral bandwidths with grating waveguide structures," Appl. Phys. Lett. 69, 4154-4156 (1996).
[CrossRef]

Selmeczi, D.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, "Narrow spectral bandwidths with grating waveguide structures," Appl. Phys. Lett. 69, 4154-4156 (1996).
[CrossRef]

Skivesen, N.

Sun, B. Q.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Tikhodeev, S. G.

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Wang, S. S.

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Zentgraf, T.

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Zhang, X. P.

X. P. Zhang, Shengfei Feng, Hongmei Liu and Li Wang, "Enhanced optical response in doubly waveguided plasmonic gratings," Appl. Phys. Lett. 93, 093113 (2008).
[CrossRef]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Ziolkowski, R. W.

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

Q1. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, H. Giessen, "Optical switching in metallic photonic crystal slabs with photoaddressable polymers," Appl. Phys. B: Lasers Opt. 82, 543-547 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

G. Levy-Yurista and A. A. Friesem, "Very narrow spectral filters with multilayered grating-waveguide structures," Appl. Phys. Lett. 77, 1596 (2000).
[CrossRef]

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, "Guided mode resonance filters using polymer films," Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, "Narrow spectral bandwidths with grating waveguide structures," Appl. Phys. Lett. 69, 4154-4156 (1996).
[CrossRef]

X. P. Zhang, Shengfei Feng, Hongmei Liu and Li Wang, "Enhanced optical response in doubly waveguided plasmonic gratings," Appl. Phys. Lett. 93, 093113 (2008).
[CrossRef]

IEEE J. Quantum Electron (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant Grating Waveguided Structures," IEEE J. Quantum Electron 33, 2038 (1997).
[CrossRef]

J. Lightw. Technol. (1)

G. Nemova and R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).
[CrossRef]

Nano Lett. (1)

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, "Metallic photonic crystals based on solution-processible gold nanoparticles," Nano Lett. 6, 651-655(2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Microscopic images of the grating on top of the WGS: (a) AFM height and the profile (inset), (b) SEM.

Fig. 2.
Fig. 2.

Angle-resolved tuning properties of the resonance mode of the WGS for (a) TM and (b) TE polarizations for an incident angle varying from 0° to 52° in steps of 4°.

Fig. 3
Fig. 3

Schematic diagram of the WGS.

Fig. 4.
Fig. 4.

Angle-resolved tuning properties of the sample (red line: simulation, TE polarization; red solid square: measurement, TE; black line: simulation, TM; black solid square: measurement, TM), and the angle-resolved tuning rate with the red dashed line for the TE and the black dashed line for TM polarizations.

Fig. 5.
Fig. 5.

Simulated angle-resolved tuning properties for the refractive index of the waveguide ranging from 1.0 to 3.0 with Λ=300 nm, h=200 nm, nsp =1.0, and nsb =1.52 (dashed: TM, solid: TE).

Fig. 6.
Fig. 6.

(a) Simulated angle-resolved tuning properties for the thickness of the waveguide, ranging from 200 nm to 500 nm, with Λ=300 nm, nwg =2.0, nsp =1.0, nsb =1.52. (b) Calculated resonant wavelength as a function of the thickness of the waveguide for an incident angle of 0° and 40° degrees. (c) Calculated angle-resolved tuning rate for different ranges of the waveguide thickness for TE polarization.

Fig. 7.
Fig. 7.

Simulated angle-resolved tuning properties for a grating period ranging from 280 nm to 400 nm, with h=200 nm, nwg =2.0, nsp =1.0, and nsb =1.52.

Fig. 8.
Fig. 8.

(a) Simulated angle-resolved tuning properties for the refractive index of the superstrate ranging from 1.0 to 1.9 with Λ=300 nm, h=200 nm, nwg =2.0, and nsb =1.52. (b) Simulated angle-resolved tuning properties for the refractive index of the substrate ranging from 1.0 to 1.8 with Λ=300 nm, h=200 nm, nwg =2.0, and nsp =1.0.

Fig. 9.
Fig. 9.

Calculated resonant wavelength (λR ) as a function of the refractive indices and the corresponding tuning rate of (a) the superstrate (ΔλR /Δnsp ) and (b) substrate (ΔλR /Δnsb ) at normal incidence.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nspΛsin(θ)+nwgΛcos(ψ)=,
2kwgh2ϕ12ϕ22=0,
Δ=2kwgh2ϕ1TM2ϕ2TM2=2nwg2πλsin(ψ)h2arctan{nwg2nsp2(nwg2cos2(ψ)nsp2)12nwgsin(ψ)}2arctan{nwg2nsb2(nwg2cos2(ψ)nsb2)12nwgsin(ψ)}2.
Δ=2kwgh2ϕ1TEϕ2TE2=2nwg2πλsin(ψ)h2 arctan{(nwg2cos2(ψ)nsp2)12nwgsin(ψ)}2arctan{(nwg2cos2(ψ)nsb2)12nwgsin(ψ)}2.

Metrics